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Abstract—Although a significant advancement of differential
evolution (DE) for global optimization has been witnessed in the
past two decades, the problems of premature convergence and
stagnation are still open questions that hinder the performance.
Both are likely to occur on complicated multimodal functions,
but the phenomena differ. Premature convergence refers to
a rapid loss of population diversity when attracted to a local
minimum while stagnation happens even though the population
is diverse. To deal with these problems, this article proposes
a domain transform (DT) methodology. Different from existing
fitness analysis which mainly utilizes the original fitness land-
scape information, DT yields a transformed fitness landscape
with transform operation to the frequency domain and inverse
transform operation back to the solution domain, between which
the first few highest frequencies are removed. With the deletion
operation, the transformed fitness landscape becomes smoother
and facilitates the escape from local minima and stagnation on
complicated multimodal functions. Simulation results show that
DT significantly improves the population successful update rate
and population convergence. The constructed DTDE algorithm
consequently exhibits remarkable improvements on the baseline
algorithm and outperforms several state-of-the-art DE variants.
DT has also been extended for noisy optimization and it performs
better than the baseline, the classic resampling method, state-of-
the-art DE variants, as well as several popular noisy evolutionary
optimization algorithms.

Index Terms—Differential evolution (DE), domain trans-
form (DT), evolutionary optimization, fitness landscape, noisy
optimization.

I. INTRODUCTION

EVOLUTIONARY algorithms (EAs) [1] have been demon-
strated as a kind of effective approach for solving

complicated optimization problems. With a distributed pop-
ulation structure, EAs are more robust to local minima when
compared with traditional single-point searching methods, such
as the gradient descent [2]. In the past two decades, many

Manuscript received 26 April 2022; revised 25 July 2022 and 28 September
2022; accepted 22 October 2022. Date of publication 8 November 2022; date
of current version 3 October 2023. This work was supported in part by the
Applied Science and Technology Research and Development Special Fund
Project of Guangdong Province under Grant 2016B010126004; in part by the
National Special Project Number for International Cooperation under Grant
2015DFR11050; and in part by the National Natural Science Foundation of
China under Grant 62201227 and Grant 62071503. (Corresponding authors:
Sheng Xin Zhang; Shao Yong Zheng.)

Sheng Xin Zhang, Yu Hong Liu, and Li Ming Zheng are with the College
of Information Science and Technology and the College of Cyber Security,
Jinan University, Guangzhou 510632, China (e-mail: zhangsx@jnu.edu.cn).

Yi Nan Wen is with the College of Information Science and Technology,
Jinan University, Guangzhou 510632, China.

Shao Yong Zheng is with the School of Electronics and Information
Technology, Guangdong Provincial Key Laboratory of Optoelectronic
Information Processing Chips and Systems, Sun Yat-sen University,
Guangzhou 510006, China (e-mail: zhengshaoy@mail.sysu.edu.cn).

This article has supplementary material provided by the
authors and color versions of one or more figures available at
https://doi.org/10.1109/TEVC.2022.3220424.

Digital Object Identifier 10.1109/TEVC.2022.3220424

research interests have been devoted to EAs and fruitful
advancements have been achieved. Among them, differential
evolution (DE) [3], proposed by Price and Storn, has been one
of the most popular EAs. In the DE literature, a clear step-by-
step development from the classic to the state-of-the-art could
be observed [4], [5], [6] and DE has been applied in various sci-
entific and engineering fields, such as machine scheduling [7],
protein structure prediction [8], combinatorial [9], and con-
strained multiobjective optimization [10].

As for black-box optimization, it is crucial to collect the
evolutionary information to guide the search process. The
fitness landscape which depicts a glance of the problem struc-
ture, provides essential observations and evidence for the
adjustment of search strategies. Methods for utilizing fitness
landscape information could be implicit or explicit.

Implicit methods usually take advantage of fitness compari-
son or fitness ranking. For DE, on the one hand, the one-to-one
fitness comparison of parent and offspring in the DE selec-
tion has been widely adopted to develop strategy adaptation,
such as memory [11], probability [12], multipopulation [13],
and stage-based [14] adaptation mechanisms. It has also
been employed for adjusting control parameters, such as
the individual-encoded [15], distribution-dependent [16], and
history-based [17] parameter control methods. On the other
hand, the observation from fitness ranking has been con-
sidered to allocate strategy or parameters. For instance,
the individual-dependent mutation [18], individual-dependent
topology [19], fitness-based similarity selection [20], and
individual-dependent parameters [18].

Explicit methods first analyze the features of the fitness
landscape and then decide the search strategy based on the
obtained features. Several fitness landscape metrics have been
proposed, such as the fitness distance correlation (FDC) [21],
dispersion (DISP) [22], population evolvability [23], and new
measures with the assist of frequency analysis [24]. Some
of them have been utilized to determine search strategies.
For instance, the selection of CMA-ES variants [22], distri-
bution strategies [25], DE strategies [26], [27], [28], [29], and
different EAs [23].

Although the performance of DE has been significantly
advanced with the explicit and implicit utilizations of fit-
ness information, the problems of premature convergence [30]
and stagnation [31], [32], [33] are still challenging for
DE. Premature convergence refers to the attraction of a pop-
ulation to a local minimum, which usually happens when
the information of fit solutions is overused. While when
stagnation occurs, the population is still diverse, but the
solutions stop generating successful offspring [31]. As pointed
by Lampinen and Zelinka [31], DE suffers from stagnation
due to the limited number of trial vectors.
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To deal with the issues of premature convergence and stag-
nation, this article proposes the domain transform (DT)-based
analysis of the fitness landscape to guide the evolution of
DE. At each generation, the original fitness landscape which
consists of parent and offspring solutions are first transformed
from the solution domain to the frequency domain to separate
the components of the original landscape. Subsequently, the
top highest frequencies are removed in the frequency domain,
followed by an inverse transform operation which transforms
the remaining frequencies from the frequency domain back
to the solution domain. A transformed fitness landscape is
consequently generated by the DT method.

DT has been incorporated with a competitive baseline, i.e.,
the SCSS-L-SHADE [20] algorithm. With the transformed fit-
ness, the DE population yields higher population successful
update rate and higher population convergence, which helps
escape from the situation of stagnation and premature conver-
gence on complicated multimodal functions. Further, to take
advantages of both the transformed and original fitness land-
scapes on multimodal and unimodal functions, respectively,
an evolution difficulty-based utilization mechanism is adopted.
The effectiveness of the proposed methods is confirmed by
experiments performed for solving traditional noiseless as well
as noisy optimizations [34].

The remainder of this article is organized as follows. Section II
presents the background, including the advancement of DE for
noiseless optimization, the related works on noisy optimization,
and fitness landscape analysis. Section III introduces the theory
of discrete Fourier transform (DFT). Section IV describes the
proposed method while Section V validates its effectiveness
by simulation comparisons. Finally, Section VI concludes this
work and makes a prospect for future research.

II. BACKGROUND

A. Traditional Noiseless Evolutionary Optimization With DE

Due to its simple structure and competitive performance,
DE1 has attracted substantial attention from researchers. In
the past two decades, the performance of DE has been con-
sistently improved with contributions mainly attributed to the
enhancements of strategy [35] and parameter [36] controls.

Since DE is featured by the differential mutation and there
are plenty of mutation strategies available for solving dis-
tinct types of problems, researchers have paid attention to
strategy adjustments for performance improvements. On the
one hand, new mutation strategies have been constructed,
for instance, the “current-to-pbest/1” mutation [16], the col-
lective information-based mutation [37], and the level-based
mutation [38]. On the other hand, to utilize strategies, various
methods have been developed, including strategy combination,
strategy adaptation, and multistrategy utilization. For exam-
ple, the global and local mutation-based DE (DEGL) [39]
combines global mutation with local mutation using a weight-
ing factor. Strategy adaptive DE (SaDE) [11], ensemble of
parameters and strategies DE (EPSDE) [40], multipopulation-
based ensemble of strategies DE (MPEDE) [13], DE with

1Due to the space limitation, a brief introduction of the classic DE is
presented in the supplementary file.

adaptive mutation (ZEPDE) [41], and explicitly adaptive
DE (EaDE) [42] adapt strategies according to distinct mecha-
nisms. Except for the strategy adaptation, research on employ-
ing multiple strategies to simultaneously generate multiple
candidates and filtering one as offspring has also been con-
ducted, such as the composite DE (CoDE) [43], cheap surro-
gate model-based DE (CSM-DE) [44], underestimation-based
DE (UMDE) [45], and selective candidate with similarity
selection rule-based DE (SCSS-DE) [20].

The performance of DE also heavily depends on the control
parameters, namely, the scaling factor F, the crossover rate
CR, and the population size NP. To adapt these parameters
for different problems, deterministic and adaptive parameter
control schemes have been developed. Deterministic methods
adjust the parameters based on progress-dependent values, such
as the linear population size reduction in L-SHADE [46] and
the weighting-based F setting in jSO [47], or observations, such
as the fitness rankings in IDE [18]. While adaptive methods
allocate parameters based on successful experience, such as the
adaptation of F and CR in jDE [15], JADE [16], CoBiDE [48],
SHADE [17], L-SHADE_cnEpSin [49], PaDE [50], and the
adaptation of NP in ADDE [51].

B. Noisy Evolutionary Optimization

Noise imposes difficulties to the selection operation of
EAs [52], [53]. For demonstration, two solutions A and B with
real fitness of fA < fB are considered. With the injected noise
ηA and ηB, respectively, the final noisy fitness might be f noisy

A

> f noisy
B and hard to distinguish the real fitness of A and B.

It consequently influences the fitness ranking of the popula-
tion or the fitness comparison between parent and offspring
and as a result, superior solutions might be declined while
inferior solutions might mistakenly pass into the next gener-
ation. To resolve this problem and improve the performance
of noisy EAs (NEAs), researchers have put forward plenty
of techniques. Rakshit et al. [34] presented a comprehen-
sive survey on NEAs, where the noise handling techniques
were divided into five categories: 1) sampling strategy-based
explicit averaging; 2) fitness estimation from multiple sam-
plings; 3) dynamic population sizing-based implicit averaging;
4) enhanced evolutionary strategies; and 5) improved robust
selection.

First, since the reevaluation of a same solution for n times
could reduce the standard error of the mean fitness by a factor
of
√

n [34], sampling [54], [55] has been widely investi-
gated in the literature. The relevant open questions include:
1) how many samplings should be performed; 2) when to
perform the samplings; and 3) samplings perform on which
solutions. To handle these issues, sample size settings accord-
ing to time-related variables [56] such as generation number or
function evaluations, noise strength [57], fitness variance [58],
and reinforcement learning-based autonomous selection [59],
have been developed. Noise analysis deciding whether to
sample [60] and dynamic resampling [57] deciding to sample
on which solutions have also been introduced.

Second, to overcome the weakness in traditional resam-
pling strategies in which all the sampled fitness are usually
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assumed to have equal occurrence probability, improved
fitness estimation from multiple samplings using uniform
fitness interval [61], nonuniform fitness interval [62], and
type-2 fuzzy set [62] have been proposed.

Third, the contamination effect incurred by noise can be
compensated by increasing the population size [63], which
takes advantages of the inherent characteristics of population-
based metaheuristics to frequently sample the promising
area in the search space and therefore to produce a large
number of similar trial solutions. However, similar to the sam-
pling strategy, the population sizing strategy also increases
the computational complexity since more solutions have to be
evaluated at each generation.

Fourth, how to exploit the local area of a solution and how to
explore the search space without being trapped into premature
convergence are also major challenges for noisy optimization,
which has been investigated with enhanced evolutionary
strategies, such as opposition-based learning [64], adaptive
mutation strength [65], data mining-based crossover [66],
chaotic jump [67], local model- [68] and memetic-based [69]
searches, and weighted search center-based learning [70].

Finally, the judicious selection of solutions for resam-
pling and better solutions for the next generation can offset
the adverse effect caused by noise. Quite a lot of robust
selection strategies have been developed, such as Kalman
formulation-assisted reevaluation [71], rolling tide selection-
based resampling [72], and restricted Boltzmann machine-
based likelihood correction [73].

C. Fitness Landscape Analysis

The fitness landscape, which consists of the fitness val-
ues of individuals, is the basic description of a problem.
Through the analysis of the fitness landscape, useful
information on optimization problems can be obtained.
Due to this benefit, the fitness landscape has been widely
investigated and applied to predict appropriate strate-
gies or optimizers to suit the optimization of differ-
ent problems. Representative methods include FDC [21],
evolvability [74], dispersion (DISP) [22], ruggedness of
information entropy (RIE) [75], exploratory landscape anal-
ysis (ELA) [76], and local optima networks (LONs) [77].

FDC [21], a method for quantifying the relationship between
fitness and distance was designed by Jones and Forrest to mea-
sure the difficulty of optimization problems. This indicator is
reliable in many cases even with a few samples, but it has
counterexamples. For instance, the “GA-easy” fitness function
which shows no relationship between fitness and Hamming
distance from the global optimum [21]. The initial FDC indi-
cator cannot be used to predict unknown problems because
it needs the knowledge of the global optimum. While this
weakness has been overcome in the later developments and
FDC has been employed to assist the selection of appropriate
DE strategies [29]. Evolvability [78], a measurement of parent
solutions’ ability to produce fitter offspring is effective in prob-
lems in which FDC is invalid. But it also has counterexamples,
such as the long path problem [78]. In [74], the features of fit-
ness landscape were revealed by the average evolvability over

the offspring of individuals sampled randomly or online. While
this metric may not be effective in search space with het-
erogeneous anisotropic nature to make a prediction of global
space properties. Lunacek and Whitley proposed DISP [22],
which is obtained by calculating the average pairwise distance
in solution space between all points in a sample, to estimate
the presence of funnels. DISP was adopted to choose suitable
CMA-ES variants for solving different types of problems [22].
Malan and Engelbrecht [75] adopted entropic measures for
continuous problems to measure the ruggedness, which refers
to the number and distribution of local optima. ELA [76],
[79], proposed by Mersmann et al., includes several meth-
ods like expected running time (ERT) and multidimensional
scaling (MDS), which can be employed to obtain the macro-
properties of an unknown problem. They later suggested some
low-level features in [80] to estimate the properties relatively
cheaply. LONs [77], [81] were modified to obtain a continuous
fitness landscape, of which nodes and edges were achieved by
recording and aggregating the local minima visited by several
trajectories of the Basin-Hopping algorithm. It can make the
global structure of high-dimensional continuous functions be
visualized while it is not computationally efficient.

III. THEORY OF DISCRETE FOURIER TRANSFORM

A. Discrete Fourier Transform

Fourier series (FS) [82] was used to analyze continuous
periodic functions, which has also been further extended
to the analysis of continuous aperiodic functions on the
assumption that the period is infinite. The continuous Fourier
transform (CFT) is an integral transformation, with which
a complicated signal is decomposed into the superposition
of several sine functions. In this way, the analysis of the
original time series can be transformed to that of the ampli-
tudes and phases of various harmonic components at different
frequencies. The calculation of CFT can be written as follows:

F(ω) =
∫ ∞
−∞

f (t)e−jωtdt (1)

where f (t) denotes the continuous aperiodic function of time,
ω represents the angular frequency of sine function, and j =√−1. The inverse operation of CFT can be obtained by

f (t) = 1

2π

∫ ∞
−∞

F(ω)ejωtdω. (2)

The frequency distribution, amplitudes, and phases of var-
ious frequencies can be obtained by CFT, which is an
easy approach for analyzing and processing the time series.
However, although it is applicable to utilize (1) to calculate
the CFT of closed-form functions, it is not the case in indus-
trial applications since only discrete data can be processed by
computers. To this end, the DFT was developed, which reflects
the mapping relationship between the discrete time and dis-
crete frequency. The DFT of a uniformly sampled and finite
sequence m(n) with N sampling points is defined as follows:

M(k) =
N−1∑
n=0

m(n)Wnk
N , k = 0, 1, . . . , N − 1 (3)
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(a) (b)

Fig. 1. Time series m(n) and its DFT M(k). (a) Time domain. (b) Frequency
domain.

where M(k) denotes the output data obtained by DFT and Wnk
N

is equal to (WN)nk. WN , the Nth root of unity, is written as

WN = e−
j2π
N . (4)

From (3), we can see that N multiplications and N−1 addi-
tions are required to obtain an M(k) and obviously the number
of multiplications and additions for calculating all M(k) is pro-
portional to N2, which is of high computational complexity
along with the increase of N. To reduce both computational
efforts and round-off mistakes of the DFT substantially, fast
Fourier transform (FFT) was developed by Cooley and Tukey
in 1965 [83], which takes advantages of the time-series decom-
position and some inherent properties, such as symmetry,
periodicity, and reducibility of coefficient Wnk

N .

B. Inverse Discrete Fourier Transform

DFT transforms the signal from the time domain to the
frequency domain, while it is necessary to convert it back to
the time domain when the signal processing is finished. The
definition of inverse DFT (IDFT) is as follows:

m(n) = 1

N

N−1∑
k=0

M(k)W−nk
N , n = 0, 1, . . . , N − 1 (5)

where W−nk
N = (WN)−nk and WN is the same as (4).

There exist a lot of problems difficult to obtain feasible solu-
tions straightforwardly, while they become achievable with the
use of DT. Such kind of problems can be solved by transform-
ing the original problem to a transform-domain problem and
converting them back to the original domain via a reciprocal
operation after finding appropriate solutions. For demonstra-
tion, a finite time series m(n) = sin(n/4) + sin(n/8) + 0.1
× sin(n/16) in time and frequency domains are shown in
Fig. 1, where n is an integer ranging from −100 to 100 with
the sampling interval set to be 1. Owing to the fact that the
time series m(n) is obtained by linear superposition of three
basic sine functions, sin(n/4), sin(n/8), and sin(n/16), each of
which has a single frequency, that is, 1/(8π ), 1/(16π ), and
1/(32π ), respectively, only three frequency values are required
to depict the time series m(n) in the frequency domain, as
shown in Fig. 1(b) and the amplitude is 1, 1, and 0.1, respec-
tively. Therefore, the main components of the original signal,
which are not easily distinguishable in the time domain could
be clearly observed in the frequency domain. Moreover, we

Algorithm 1 DTEO
Input: PG: parent population at generation G; FPG: fitness of
PG; OG: offspring population at generation G; FOG: fitness
of OG; D: problem dimensionality; NP: population size
Output: TFPG and TFOG: the transformed fitness of PG and
OG respectively

1: Perform DFT to transform the solution sequence to
frequency domain as frequency series Fs according to
Component 1;

2: In the frequency domain, remove frequency series with the
top highest frequencies from Fs according to Component 2
and the remaining series is denoted as Fs’;

3: Perform IDFT on Fs’to transform the frequency series back
to solution domain as TFG according to Component 3;

4: Separate TFG into transformed fitness TFPG of PG and
transformed fitness TFOG of OG.

can directly operate the frequencies, i.e., the features of the
original signal in the frequency domain.

IV. PROPOSED METHOD

In this article, we introduce the DT from signal processing
and communication fields to evolutionary computation with
the aims of: 1) providing a new insight on function landscape
analysis with DT; 2) alleviating the problems of premature
convergence and stagnation which frequently occur on com-
plicated multimodal function landscape; and 3) constructing
a new searching paradigm based on DT. This section will
first describe the DT-based evolutionary optimization (DTEO)
technique and then introduce its implementation on DE for
noiseless and noisy optimization, respectively.

A. DT for Evolutionary Optimization

Unlike the existing methodology which mainly focuses on
the detection and utilization of original landscape information,
this article proposes the DT of landscape methodology to guide
the optimization process of an EA. The general idea of DTEO
is shown in Algorithm 1, which consists of three components:
1) T-to-F: transform the solution sequence from the solution
domain to the frequency domain (line 1); 2) O-in-F: operate
the frequency series in the frequency domain (line 2); and
3) T-to-S: transform the processed frequency series back to the
solution domain (line 3). These three components are realized
by Components 1–3, respectively.

In Component 1 (T-to-F), given the parent population PG, the
offspring population OG, and their fitness FPG and FOG at the
Gth generation, line 1 first combines them as a union solution
population UPG and a union fitness set UFG, respectively. This
operation will facilitate the comparison of parent and offspring
fitness in the same context. Afterward, T-to-F is performed for
each dimension of the problem (lines 3–6). Specifically, the dth
dimension values of UPG is first set as UPd,G (line 3); second,
UPd,G is sorted from the smallest to the largest according to the
variable values and the associated fitness UFG is reindexed as
UFd,G accordingly (line 4), which enables the comparison of
fitness within neighborhoods; third, the sorted fitness sequence
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Component 1 T-to-F (DFT-Based Transformation to
Frequency Domain)
Input: PG: parent population at generation G; FPG: fitness of
PG; OG: offspring population at generation G; FOG: fitness
of OG; D: problem dimensionality; NP: population size
Output: Fs: the frequency series in frequency domain

1: Combine PG and OG, FPG and FOG as a union solution
population UPG and a union fitness set UFG respectively;

2: For d = 1:D
3: UPd,G ← the d-th dimension of UPG;
4: Sort UPd,G according to the variable values from the

smallest to the largest and reindex the associated UFG as
UFd,G accordingly;

5: Let m(n) = UFd,G, k = 0, 1, · · ·, N − 1 with N = 2
× NP and perform DFT calculation to obtain frequency
series M according to (3);

6: Fsd ← M;
7: End For

Component 2 O-in-F (Operation in Frequency Domain)
Input: Fs: the original frequency series in frequency domain;
D: problem dimensionality
Output: Fs’: the remaining frequency series in frequency
domain
1: For d = 1:D
2: Remove the top r × 100% (r∈[0,1)) highest frequencies

from Fsd;
3: End For

UFd,G is treated as the time series, i.e., m(n) in (3) is set as
UFd,G and the indices k are 0, 1, . . ., N − 1, where N = 2 ×
NP is the series size (i.e., union population size). Then, DFT is
performed to obtain frequency series M according to (3) (line
5); and finally, the obtained frequency series M for the dth
dimension is stored in Fsd (line 6).

In Component 2 (O-in-F), for each of the D frequency
series, the top r × 100% (r ∈ [0,1)) highest frequencies are
removed from Fs (lines 1–3) to obtain the remaining frequency
series Fs’.

In Component 3 (T-to-S), for each of the D processed
frequency series Fs’d in the frequency domain, they are trans-
formed back to the solution domain with IDFT (lines 2–4).
Specifically, M(k) in (5) is first set as Fs’d and the indices n
are 0, 1, · · ·, N − 1, where N = 2 × NP is the series size (i.e.,
union population size). Then, IDFT is performed to obtain the
solution (time) series m according to (5) (line 2); second, the
obtained solution series m is reindexed as m’ according to the
sorting indices in line 4 of Component 1 (line 3); third, the
series m’ are stored in m’d (line 4). Finally, the transformed
population fitness TFG in the solution domain is calculated as
the average fitness of the D m’d series

TFG =
D∑

d=1

m′d/D. (6)

Following the three components, in line 4 of Algorithm 1,
TFG is separated into the transformed parent fitness TFPG of

Component 3 T-to-S (IDFT-Based Transformation Back to
Solution Domain)
Input: Fs’: the remaining frequency series in frequency
domain; D: problem dimensionality;
Output: TFG: the transformed fitness in solution domain

1: For d = 1:D
2: Let M(k) = Fs’d, n = 0, 1, · · ·, N − 1 with N = 2 ×

NP and perform IDFT calculation to obtain the solution
series m according to (5);

3: Reindex m as m’ according to the sorting indices in line
4 of Component 1;

4: m’d ← m’;
5: End For
6: TFG = ∑D

d=1 m′d/D

(a) (b)

(c)(d)

Fig. 2. Illustrative example of DTEO with unilateral amplitude spectrum in
the frequency domain. (a) Solution series. (b) Frequency series. (c) Remaining
frequency series. (d) Transformed series.

PG and the transformed offspring fitness TFOG of OG, respec-
tively. In the O-in-F operation, if there is not any frequency
removed (i.e., r = 0), TFPG and TFOG are the same as FPG

and FOG, respectively, and DTEO degrades to EO.
To illustrate DTEO, a union population, including 12 indi-

viduals with one dimension, i.e., UPG = {−0.85, 0.92, 1.51,
−0.47, 0.47, −1.69, −1.78, 0.12, 1.11, 1.73, −1.48, 0.27}
is considered as an example, and the corresponding fitness
are f (UPG)= {4.52, 1.84, 22.25, 20.13, 20.05, 16.17, 11.05,
2.86, 3.81, 13.88, 22.11, 11.65}. First, reindex the fitness
series f (UPG) according to the variable values of all indi-
viduals from the smallest to the largest to obtain the sorted
fitness series fsorted(UPG)= {11.05, 16.17, 22.11, 4.52, 20.13,
2.86, 11.65, 20.05, 1.84, 3.81, 22.25, 13.88} in the solution
domain, as shown in Fig. 2(a). Then, the T-to-F operation
is performed to transform the sorted fitness series into the
frequency domain with the utilization of DFT as depicted
in Fig. 2(b). Subsequently, to smooth the original fitness
landscape with much fluctuations, the O-in-F operation is per-
formed to remove the top five highest frequencies, as shown
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Fig. 3. Illustration of the population diversity over the evolution process
with L-SHADE on unimodal Bent Cigar function and multimodal Rastrigin’s
and Schwefel’s functions.

in Fig. 2(c). Finally, the T-to-S operation is carried out on the
remaining frequency series to transform it back to the solution
domain, as shown in Fig. 2(d) with blue line.

B. DT for Traditional Noiseless Optimization

As is known, there is a dilemma between convergence and
diversity in EAs. To improve the performance, both problem
structure and algorithmic strategy should be simultaneously
investigated. On the one hand, explicit analysis of func-
tion landscape has been performed to predict the problem
difficulty and characteristic to select suitable strategies or
algorithms [22], [28], [29]. On the other hand, implicit utiliza-
tion of function landscape information, such as the successful
experience in the searching history has also been employed
to adaptively adjust the search strategies [35] as well as the
control parameters [36] in an online manner. The signifi-
cant advance of DE to be state-of-the-art in the past two
decades has witnessed the success of the above methodol-
ogy. Nevertheless, the problems of premature convergence and
stagnation are still challenging for DE.

Premature convergence, which usually accompanies with
a rapid loss of population diversity is widely known. Herein,
we would like to illustrate the stagnation with an exam-
ple given in Fig. 3, where the population diversity div
over the evolution process achieved by the state-of-the-art
L-SHADE [46] on 50-D unimodal Bent Cigar function
(F1 from the CEC2017 test suite [84]) and multimodal
Rastrigin’s and Schwefel’s functions (F5 and F10 from the
CEC2017 test suite) is shown. div is calculated as

div = 1

NP

NP∑
i=1

‖Xi − C‖ (7)

where ||Xi − C|| represents the Euclidean distance between
Xi and C, and C = (1/NP)

∑NP
i=1 Xi is the center of the

population.
From Fig. 3, L-SHADE could achieve a small div <

1E−08 on the unimodal function, indicating that the algo-
rithm is well converged on the function. However, on the
two multimodal functions, the finally obtained div is about
45 and 319 and not small enough. As is known, L-SHADE
adopts a linear population reduction scheme to accelerate the
convergence and the population size is only 4 at the final gen-
eration. While Fig. 3 shows that on the multimodal functions,

Algorithm 2 DT Methodology for DE
1: Initialize the population size NP, mutation factor F = 0.5

and crossover rate CR = 0.5; initialize the population PG;
denote the fitness of PG as FPG; set generation counter
G = 0;

2: Perform DTEO (Algorithm 1) with PG and FPG to obtain
the transformed population fitness TFG (Herein, FOG and
OG are empty and N = NP); ⇐

3: While stopping condition is not met
4: Sort the population based on TFG; ⇐
5: Perform DE’s mutation to generate a mutant population

VG;
6: Perform DE’s crossover on VG and XG to obtain an

offspring population OG;
7: Evaluate the fitness of OG and denote it as FOG;
8: Perform DTEO (Algorithm 1) with PG, TFG, OG, and

FOG to obtain the transformed parent fitness TFPG and
the transformed offspring fitness TFOG; ⇐

9: Perform DE’s selection to select solutions as PG for the
next generation based on TFPG and TFOG; ⇐

10: Update the transformed fitness TFG of PG; ⇐
11: G = G + 1;
12: End While

the population converges slowly, and the final population is
still quite diverse with insufficient convergence.

This article incorporates DT with DE to deal with the above
problems. The pseudocode of the DT methodology for DE
is shown in Algorithm 2. Comparing Algorithm 2 with the
original DE, the differences, as marked with “⇐” lie in:
1) DTEO (Algorithm 1) is performed on the initial population
(line 2) and the combined population of parent and offspring
at each generation (line 8) to obtain the transformed fitness;
2) the sorting process of the population is based on the trans-
formed fitness (line 4) while in the original DE, it is based
on FPG; and 3) the selection operation of DE is based on
the transformed fitness TFPG and TFOG (line 9) while in the
original DE, it is based on FPG and FOG. Overall, the main
idea of DT-assisted DE is to use the transformed fitness to
replace the original fitness, which could be utilized to con-
struct mutation strategies such as the fitness ranking process
in the “current-to-pbest/1” mutation strategy [16], to reduce
population size, such as the population size reduction based
on fitness in L-SHADE or to determine the selection.

The motivation of the DT methodology is to remove the
high-frequency elements of challenging function landscape to
make it smooth to help escape from local optima and stag-
nation. For demonstration, Fig. 4 depicts an example of the
original and DT-based landscapes. Compared the transformed
landscape with the original one, it is observed that DT elim-
inates the large variations of the original landscape. With the
transformed fitness, it is easy to jump out from the local min-
ima. To illustrate this, Fig. 4 presents a parent solution (black
circle) and its associated offspring solution (green circle) and
their transformed fitness are the black and green squares,
respectively. According to the selection operation of DE in
the original landscape, the offspring is declined since it has
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Fig. 4. Illustration of the motivation of the proposed DT methodology.

Fig. 5. Effect of DT on a smooth unimodal landscape.

worse fitness. While according to the transformed fitness, this
offspring, which is beneficial to basin-jumping is accepted for
the next generation since its transformed fitness (green square)
is better. Therefore, it is seen that the utilization of the trans-
formed fitness influences the selection of solutions, which is
also a critical operation of DE. The original fitness compari-
son always exhibits a greedy property by preferring the fitter
solutions while the transformed fitness comparison could also
preserve potential solutions. Note that this process is different
from the random acceptance of a worse solution. For expla-
nation, another possible offspring, the red circle solution is
also added in Fig. 4. The random acceptance manner might
select the red circle offspring for the next generation while
the DT method would not as the transformed offspring fit-
ness (red square) is worse than the transformed parent fitness
(black square). The reason is that the transformation in DT
is based on the original fitness and thus the tendency of the
transformed landscape correlates with the original landscape.
Experimental studies about the benefit of DT on alleviat-
ing stagnation and improving population convergence will be
presented in Section V-A4.

While for the originally smooth unimodal function, DT
might adversely generate the rugged landscape, as shown in
Fig. 5. To resolve this problem, we merge the advantages of
both original and transformed landscapes and DT is performed
only when the optimization stage becomes difficult.

With these considerations, the pseudocode of the proposed
DTDE is shown in Algorithm 3. At the beginning of the
optimization, the original DE is performed, while when the
optimization enters a relatively difficult stage, DT is per-
formed. To detect the optimization difficulty, we adopt our
previously proposed mechanism in [42], where the total fitness
improvements Imps and Impi of the superior and inferior

Algorithm 3 DTDE
1: Initialize the population size NP, mutation factor F and

crossover factor CR; initialize the population PG; evaluate
the fitness of PG and denoted it as FPG; set generation
count G = 0;

2: While stopping condition is not met
3: If the optimization process becomes difficult then
4: Perform DT assisted DE, i.e. (lines 4−11) of

Algorithm 2;
5: Else
6: Perform original DE;
7: End If
8: End While

solutions every ten generations are accumulated according to
(8) and (9). If Imps is larger than Impi, the optimization
becomes relatively difficult

Imps =
10∑

g=1


NP/2�∑
rank(i)=1

�fi (8)

Impi =
10∑

g=1

NP∑
rank(i)=�NP/2+1

�fi (9)

where

�fi =
{

f (Xi,G)− f (Ui,G), if f (Ui,G) < f (Xi,G)

0, otherwise.
(10)

rank(i) denotes the fitness ranking of the ith individual. The
smaller, the better. 
·�represents a floor function and �·is
a ceiling function.

To demonstrate the performance of the DT methodology
and the effectiveness of the difficulty detection mechanism,
SCSS-L-SHADE [20] is adopted as the original algorithm
and Fig. 6 shows the convergence graphics of the origi-
nal, DT-based, and DTDE algorithms on five selected 50-D
CEC2017 functions, including three multimodal functions (F4:
shifted and rotated Rosenbrock’s function; F5: shifted and
rotated Rastrigin’s function; and F10: shifted and rotated
Schwefel’s function) and two unimodal functions (F1: shifted
and rotated Bent Cigar function and F3: shifted and rotated
Zakharov function).

It is observed from Fig. 6 that the original SCSS-L-SHADE
performs better on the two unimodal functions while the DT-
based algorithm is superior on the three multimodal functions.
Noticeably, the difficulty detection mechanism effectively
takes advantages of both landscapes. Specifically, DTDE out-
performs the original algorithm on the multimodal functions
F4, F5, and F10 and is competitive on the unimodal func-
tions F1 and F3. While compared with the single DT-based
algorithm, DTDE has better performance on the unimodal
functions F1 and F3 and multimodal function F4 and com-
parable performance on the multimodal functions F5 and F10.
On F5 and F10, DTDE converges slower than DT-based algo-
rithm since it involves the difficulty detection mechanism. DT
is not triggered from the beginning and has a delay. While
comparing DTDE with the original algorithm, it is observed
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Fig. 6. Convergence graphics of the original, DT-based, and DTDE algorithms on five selected 50-D CEC2017 functions in the trial with the median error
value. The maximum number of function evaluations is set as 10 000×D and 51 trials are performed.

that DTDE converges comparably at the early stage. This is
because DT has not been triggered at this stage. Furthermore,
at the early stage, the stagnation phenomenon in the origi-
nal algorithm is not as severe as at the late stage since the
population is relatively diverse to generate large differential
vectors.

With the DT technique, DTDE could find significantly better
solutions on several CEC2017 functions that state-of-the-art
DEs could merely achieve. More detailed comparisons and
discussions will be presented in Section V.

C. DT for Noisy Optimization

The efficiency of an EA in noisy optimization scenario
depends on both the performance of the baseline algo-
rithm and the noise handling method. From the reviewed
works in Section II-A, a significant advance in DE has been
achieved. However, when encountered with noise, mecha-
nisms which are remarkably effective in noiseless optimization
might become inefficient. As have been introduced previously,
noise hides the real function fitness and hampers the selec-
tion which is one of the core operations of EAs. Besides,
it also influences the genetic operations. For instance, in the
state-of-the-art DEs [5], the population is usually first ranked
according to fitness and then mutates toward the top-fittest
solutions. If this sorting process is disturbed by noise, so is
the effectiveness of the mutation. To construct an effective
approach for noisy optimization, these issues need address-
ing. From Section II-B, existing works on noisy evolutionary
optimization mainly paid attention to the sampling and pop-
ulation sizing strategies to compensate for the adverse effect
induced by noise. These methods usually require extra function
evaluations and increase the computational budget.

Herein, we propose the DT-based noise canceling method.
As we have known, DT obtains the transformed fitness by
deleting the top highest frequencies in the frequency domain.
This is beneficial for handling significant variations and large
ruggedness in a noisy fitness landscape. For demonstration,
we consider the 1-D sphere function [as shown in (11)]
with severe multiplicative Gaussian noise. The resultant noisy
fitness f noisy is given by (12)

f (x) = x2,x ∈ [−100, 100] (11)

fnoisy(x) = f (x)× eNor(0,1) (12)

where Nor(0, 1) represents a normal distribution with mean 0
and variance 1.

Fig. 7. Plots of the original, noise-induced, and DT-recovered landscapes
for the 1-D sphere function.

Algorithm 4 DTDEn
1: Initialize the population size NP, mutation factor F and

crossover factor CR; initialize the population PG; evaluate
the fitness of PG and denoted as FPG; set generation count
G = 0;

2: While stopping condition is not met
3: If the noise is severe then
4: Perform DT assisted DE, i.e. (lines 4−11) of

Algorithm 2;
5: Else
6: Perform DTDE (Algorithm 3);
7: End If
8: End While

Fig. 7 depicts the original, noise-induced, and DT-recovered
(with r = 0.9 in O-in-F) landscapes. It is seen that for the large
fitness values, noise makes the sphere function multimodal
shaped and imposes significant difficulties on optimization.
While with DT, the noise is suppressed, and the fitness
landscape could be partly recovered.

With severe noise, the noisy landscape of the originally
smooth unimodal landscape becomes rough. Therefore, in this
case, DT should be performed from the beginning for the uni-
modal functions. The pseudocode of the proposed DTDEn
algorithm for noisy optimization is shown in Algorithm 4.
When the noise is severe, DT is performed for the entire evo-
lution process (line 4). Otherwise, Algorithm 3 is performed
(line 6), in which DT is triggered only when the optimization
process becomes difficult.

To detect the strength of noise, a solution is randomly gen-
erated and evaluated for K times (K = 30) in the presence
of noise and the noisy fitness is stored in NF(k), k ∈{1, 2, 3,
· · ·, K}. With NF, a noisy strength associated parameter sp is
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TABLE I
PERFORMANCE COMPARISONS OF DTDE WITH THE ORIGINAL SCSS-L-SHADE ON 50-D AND 100-D CEC2017 TEST FUNCTIONS

calculated as

sp = max(NF)−min(NF)

max(NF)
(13)

where min(·) and max(·) represent the minimum and maximum
values, respectively. When sp is larger than a preset threshold
value T, the noise strength is identified as severe.

D. Time Complexity of DT

At one generation, the time complexity of FFT- and IFFT-
based transform operations in T-to-F and T-to-S for one
dimension are both O(2 × NP × log2(2 × NP)). In addi-
tion, the time complexity of the sorting of variables for one
dimension in T-to-F is O(2 × NP × log2(2 × NP)). Therefore,
the computational overhead of the proposed DT method at one
generation is O(6 × D × NP × log2(2 × NP)).

V. SIMULATION

In this section, experiments are performed to verify the
effectiveness of the proposed DT method. The CEC2017 test
suite [84], which consists of 29 minimization functions are
adopted. These functions are characterized by various math-
ematical properties, such as the unimodal functions F1 and
F3, simple multimodal functions F4–F10, hybrid functions
F11–F20, and composition functions F21–F30. To compare
the performance, 51 trials are performed for each algorithm
on each function and the finally obtained solution error value
SE is compared. SE is defined as f (x) − f (x∗), where f (x∗)
is the optimal function value and f (x) is the minimum fit-
ness value achieved with 104 × D function evaluations. Note

that for the noisy optimization, the minimal real function error
value is reported as SE. All the algorithms were implemented
in MATLAB and run on an Intel Core i9 3.10-GHz PC with
16 GB of RAM in Windows 10 system.

To draw statistically sound conclusions, the Wilcoxon
signed-rank test [85] with 5% significance level is employed
to compare the 51 entries on each function. The symbols “+,”
“=,” and “−” indicate that the DT-based method is superior
(i.e., win, W), similar (i.e., tie, T), and inferior (i.e., lose, L) to
the compared algorithm, respectively.

A. Experiments on Traditional Noiseless Optimization

1) Performance Comparison With Competitive Baseline
Algorithm: To demonstrate the effectiveness of the proposed
DT methodology for traditional noiseless optimization, it
is first incorporated with a state-of-the-art baseline algo-
rithm, the SCSS-L-SHADE [20]. As is known, L-SHADE
is a competitive DE with linear population size reduction.
While selective candidate with similarity selection rule (SCSS)
method [20] significantly improves the performance of L-
SHADE. Following the procedures shown in Algorithm 2,
when incorporating DT with SCSS-L-SHADE, fitness rank-
ing in the “current-to-pbest” mutation and population size
reduction scheme are also based on the transformed fitness.
The improved variant and the original SCSS-L-SHADE are
denoted as DTDE and Original, respectively. DTDE adopts
the same parameter settings as Original for fair comparisons.

Table S1 in the supplementary file and Table I show the
performance comparison of DTDE with the baseline on the
30-D, 50-D, and 100-D CEC2017 benchmark functions. At
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Fig. 8. Convergence graphics of the best error value achieved by the compared DEs on the 50-D CEC2017 functions F5, F7, F8, and F10 in the trial with
the median error value.

the first glance, DT significantly enhances the performance
of SCSS-L-SHADE on all the considered dimensionalities.
Statistically, DTDE performs better in 13, 16, and 15 and
loses in 3, 2, and 1 case on 30-D, 50-D, and 100-D functions,
respectively.

Considering the function properties, the followings are
observed.

1) On the unimodal functions with 6 cases, DTDE performs
similarly to the baseline.

2) On the simple multimodal functions F4–F10 with
21 cases, DTDE wins in 14 cases and loses in
none case. Particularly, we noticed that on F5,
F7, F8, and F10, DTDE achieves the best-so-
far performance with the commonly adopted func-
tion evaluation budget of 104 × D when com-
pared with other state-of-the-art DE variants, such
as L-SHADE [46], EB-LSHADE [86], PaDE [50],
SCSS-L-SHADE, EaDE [42], L-SHADE_cnEpSin [49],
jSO [47], and L-SHADE-RSP [87]. For illustration,
Fig. 8 shows the convergence graphics on the 50-D F5,
F7, F8, and F10. As seen, DTDE exhibits significant
performance superiority when compared with the com-
petitors. For instance, on F5, the median error value
obtained by the compared DEs is above 5 while DTDE
achieves a value around 0.99. On F10, the median error
value achieved by the compared DEs is around 3000,
while it is about 126 by DTDE.

3) On the hybrid functions F11–F20, DTDE exhibits better
performance in 13 out of the total 30 cases and under-
performs in five cases (30-D F14, F15, F18, 50-D F18,
and 100-D F11).

4) On the composition functions F21–F30 with 30 cases,
DTDE wins in 17 cases and loses in 1 case (50-D F27).

In summary, on the one hand, from the error value per-
spective, Table S1 and Table I show that most of the
improvements are remarkable, despite that the baseline is
rather competitive. For instance, on 100-D F5, F16, F17,
and F22, the mean error value decreases from 2.82E+01 to
2.11E+00, 1.54E+03 to 2.00E+02, 1.07E+03 to 8.87E+01,
and 1.09E+04 to 1.06E+03, respectively. On the other
hand, from the statistical “W/T/L” performance, DTDE per-
forms better on the simple multimodal functions, the hybrid
functions, and the composition functions and is comparable
on the unimodal functions.

2) Performance Comparison With State-of-the-Art DEs: To
further assess the significance of the performance enhancement

TABLE II
COMPARISON RESULTS OF DTDE WITH STATE-OF-THE-ART DES ON

30-D, 50-D, AND 100-D CEC2017 FUNCTIONS

contributed by the DT mechanism, DTDE is compared with
six state-of-the-art DE algorithms.

EB-LSHADE [86]: An improved L-SHADE algorithm with
novel mutation strategy.

PaDE [50]: An enhanced L-SHADE algorithm with novel
control parameter adaptation schemes.

EaDE [42]: Explicitly adaptive DE with two baseline
algorithms, i.e., SCSS-L-SHADE and SCSS-L-CIPDE.

L-SHADE_cnEpSin [49]: An improved L-SHADE algo-
rithm with an ensemble of sinusoidal parameter adaptation and
covariance matrix based crossover. It is an enhanced version
of the joint winner in the CEC2016 competition.

jSO [47]: An enhanced L-SHADE variant with weighting-
based scaling factor and fine-tuning parameter settings at
different evolution stages, which is the first ranked DE algo-
rithm in the CEC2017 competition.

L-SHADE-RSP [87]: An improved jSO algorithm with rank-
based selective pressure strategy, which is the first ranked DE
algorithm in the CEC2018 competition.

Tables S2–S4 in the supplementary file present the compar-
isons on the 30-D, 50-D, and 100-D functions while Table II
summarizes the results.

From Table II, compared with EB-LSHADE, PaDE, and
EaDE, DTDE is superior on 56, 57, and 43 functions and
inferior on 9, 12, and 8 functions, respectively. Compared
with L-SHADE_cnEpSin, DTDE performs better in the 30-D
and 50-D cases and is competitive in the 100-D case. From
Tables S2–S4, it is found that L-SHADE_cnEpSin mainly
shows advantages for solving the hybrid functions with 4,
3, and 7 wins in the 30-D, 50-D, and 100-D cases, respec-
tively. The main contribution to the superior performance
on hybrid functions in L-SHADE_cnEpSin is the sinusoidal
parameter adaptation according to our component experiment
by deactivating each single mechanism. With respect to jSO,
the “W/L” metric achieved by DTDE is “13/9,” “15/8,” and
“13/9.” Similar to L-SHADE_cnEpSin, jSO also exhibits better
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TABLE III
COMPARISON RESULTS OF DTDE-JSO AND DTDE-RSP WITH ORIGINAL

BASELINES ON 30-D, 50-D, AND 100-D CEC2017 FUNCTIONS

TABLE IV
COMPARISON RESULTS OF DTDE-RSP WITH STATE-OF-THE-ART DES

ON 30-D, 50-D, AND 100-D CEC2017 FUNCTIONS

TABLE V
OVERALL PERFORMANCE RANKING ON ALL THE CONSIDERED 30-D,

50-D, AND 100-D CEC2017 FUNCTIONS

performance for solving 6, 4, and 4 30-D, 50-D, and 100-D
hybrid functions, respectively. The reason is the fine-tuning
parameter settings in jSO according to our component experi-
ment. With respect to L-SHADE-RSP, since it is an improved
version of jSO, the overall performance superiority of DTDE
is less significant than the case against jSO.

3) Flexibility of DT: To demonstrate the flexibility of DT, it
is further incorporated into another two algorithms, SCSS-jSO
and SCSS-L-SHADE-RSP, resulting in two variants, named
DTDE-jSO and DTDE-RSP, respectively. From Table S5 in
the supplementary file and Table III, DT also advances the
performance of these algorithms, winning in 49 and 47 and
losing in 8 and 7 functions, respectively. Table IV shows
the comparison results of DTDE-RSP with the state-of-the-
art DEs. Comparing Table IV with Table II, it is seen that
with a more competitive baseline, the performance of DTDE-
RSP is much more attractive. This is also confirmed by the
Friedman test given in Table V in which DTDE-RSP achieves
the overall best performance with the smallest ranking value
of 2.81, followed by DTDE-jSO (3.77) and DTDE (4.56).

To further show the statistical significance, Fig. 9 plots
the critical difference diagram [88], where algorithms with
no significant difference are connected. It shows that DTDE
is statistically better than the baseline while DTDE-RSP is
statistically better than all the non-DT-based DEs.

The performance of DTDE-RSP has also been investigated
on four real-world problems (RP1–RP4) [89], including the
parameter estimation for frequency modulated sound waves
problem (RP1), the spread spectrum radar polly phase code
design problem (RP2), the “Messenger” spacecraft trajectory
optimization problem (RP3) and the “Cassini 2” spacecraft
trajectory optimization problem (RP4). From Table S6 in

Fig. 9. Comparison of DEs on all the 30-D, 50-D, and 100-D functions with
critical difference value.

Fig. 10. Convergence graphics of the population diversity achieved by the
original baseline and DTDE on the 50-D CEC2017 functions F1, F4, F8, F10,
and F19–F22 in the trial with the median error value.

the supplementary file, DTDE-RSP performs better than the
baseline on RP2 and RP3 and similarly on RP1 and RP4.
While it achieves better performance than jSO, EaDE, and L-
SHADE-RSP on 2 (RP2 and RP4), 2 (RP2 and RP3), and 3
(RP1–RP3) problems and loses on none, 1 (RP4), and none
problem, respectively.

Section IV-D discussed the time complexity of DT. To
quantify the overhead, the runtime of DTDE-RSP and the
baseline on RP2 and RP3 with the same function evaluations is
recorded, respectively, in which the fitness evaluation of RP2 is
relatively cheap while it is expensive for RP3. The overhead,
calculated by dividing the runtime of DTDE-RSP by that of
the baseline is 1.037 and 1.005 on RP2 and RP3 according to
experiments, respectively. It shows that the overhead of DT in
DTDE-RSP is acceptable.

4) Working Mechanism of DTDE:
a) Population convergence by DTDE: The experiments

in Section V-A1 show that DTDE generally yields better
performance than the baseline from the solution error perspec-
tive. To provide a deeper insight into the optimization process,
we consider the population diversity div, which is calculated
according to (7).

Fig. 10 depicts the convergence of the div value achieved the
baseline SCSS-L-SHADE and DTDE on eight selected 50-D
CEC2017 functions. From Fig. 10, with respect to the base-
line algorithm, on the unimodal function F1, it could approach
a small diversity value around 1.00E−09. However, on the
multimodal functions, for instance, F8, F10, and F20–F22, div
is above a large value (herein, 50), indicating that the popula-
tion is not well converged. While with DTDE, the population
on all the eight functions converges significantly better with
div all below 1.00E−05.

b) Population successful update by DTDE: To study the
underlying reason that leads to the convergence difference of
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Fig. 11. Average successful update rate achieved by the original baseline
and DTDE on the 50-D CEC2017 functions F1, F4, F8, F10, and F19–F22.

(a) (b)

Fig. 12. Rationale behind higher SR by DTDE. (a) Original. (b) DTDE.

the population diversity, we also pay attention to the successful
update rate SR of the population, which is calculated as

SR = SU/NP (14)

where the successful update counter SU is the number of par-
ent solutions that are successfully replaced by the offspring
(i.e., the fitness of offspring is better than parent) at each
generation and NP is the population size.

Fig. 11 shows the average SR over the entire evolution
by the original baseline and DTDE on the eight considered
functions. Note that in DTDE, SR is also calculated using
the original fitness instead of the transformed fitness in order
to compare the evolution differences with the original base-
line in the context of the original domain. From Fig. 11, on
seven functions F1, F8, F10, and F19–F22, DTDE achieves
higher SR than the baseline and the ratio SRDTDE/SROriginal is
about 1.05, 3.76, 7.91, 2.37, 4.69, 4.21, and 6.85, respectively.
The rationale behind the higher SR is illustrated in Fig. 12,
where the evolution situation of a parent solution (black dot)
by DTDE and the baseline on a given fitness landscape at
two consecutive generations is shown. For the baseline, from
Fig. 12(a), the two generated offspring (red dot) are both with
worse fitness and are declined. Therefore, there is no success-
ful update at these two generations and the parent stagnates.
While for DTDE, as we have known from Fig. 4, it would
accept solutions with worse original fitness but better trans-
formed fitness. Fig. 12(b) shows a scenario where it accepts
the worse offspring (in terms of original fitness, red dot) at
the first generation and then the better offspring (in terms of
original fitness, green dot) at the second generation. Therefore,
there is a successful update from the black dot to the green
dot at these two generations. The successful updates from
one basin to another resolve the problem of stagnation and
accelerate the convergence of the population.

c) Fitness landscape reconstruction in DTDE: DT recon-
structs the fitness landscape by removing the top highest

TABLE VI
COMPARISON RESULTS (W/T/L) OF DTDE WITH THE VARIANTS

Fig. 13. Trigger-time of the DT mechanism.

frequencies. To verify the effectiveness of this deletion oper-
ation, the following two variants are constructed.

Variant-L: Instead of the highest frequencies, in this variant,
the r lowest frequencies are removed.

Variant-R: In this variant, the r frequencies to be removed
are randomly selected.

Besides, to investigate the effect of the combination of
both original and transformed fitness, Variant-DTo is also
considered, in which only the transformed fitness is utilized.

Except the above differences, other settings are kept the
same as DTDE. From Table S7 in the supplementary file
and Table VI, compared with Variant-L and Variant-R, clear
performance superiority could be observed with the “W/T/L”
metric of “29/0/0” and “22/7/0,” respectively. As we know,
Variant-L is exactly opposed to DTDE and it loses in all
the cases. While Variant-R removes frequencies randomly and
it tends to outperform Variant-L, as is witnessed in Table
S7. Compared with Variant-DTo, DTDE wins on 14 func-
tions, including F1, F3, F4, F11–F15, F18, F19, F25, F27,
F28, and F30 and loses on 8 functions, including F5, F7, F8,
F16, F17, F21, F24, and F26. Statistically, DTDE is superior
on the unimodal and hybrid functions while Variant-DTo has
strength on the simple multimodal and composition functions.
Fig. 13 shows the trigger-time T trig(T trig = FEs/MaxFEs) of
the DT mechanism in DTDE on the 29 30-D CEC2017 func-
tions, where FEs is the consumed function evaluations before
DT is triggered while MaxFEs is the allocated maximum func-
tion evaluations, i.e., 104 × D. From Fig. 13, on the functions
that Variant-DTo performs better, including F5, F7, F8, F16,
F17, F21, F24, and F26 as seen from Table S7, the trigger-
time is relatively early with T trig smaller than 0.4. While on
the functions that DTDE exhibits advantages, including F1–
F3, F11–F15, F18, F19, F25, F27, F28, and F30, most of
the trigger-time is relatively late above 0.5. These confirm the
effectiveness of the difficulty detection mechanism.

d) Performance sensitivity to r: The parameter r controls
the percentages of the highest frequencies removed and it
fundamentally affects the performance of DT. To study the
sensitivity, nine values from 0.1 to 0.9 with a step of 0.1 are
investigated. Among all the considered r values, r = 0.2 which
performs the best is referred as the standard setting. From
Table VII, r = 0.2 performs similarly to r = 0.3 and better
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TABLE VII
COMPARISON RESULTS (W/T/L) OF THE REST SETTINGS WITH THE

STANDARD SETTING ON 30-D CEC2017 FUNCTIONS

TABLE VIII
COMPARISON RESULTS WITH THE ORIGINAL SCSS-L-SHADE IN NOISY

OPTIMIZATION WITH SLIGHT, MODERATE, AND SEVERE NOISE

than the rest settings. Generally, the performance degenerates
as r becomes over-large or over-small. Specifically, when r is
larger than 0.3, the superiority of r = 0.2 is more significant as
r increases. While when r is smaller than 0.3, the superiority
of r = 0.2 is more significant as r decreases with the “W/L”
metric against r = 0.1 and r = 0 (i.e., the baseline) of “4/1”
and “13/3,” respectively. The underlying reasons are as follows:
when r is over-large, the transformed fitness landscape becomes
flat and lacks of selective pressure while when r is over-small,
the DT mechanism could not sufficiently take effect.

B. Experiments on Noisy Optimization

In the noisy optimization, we consider the multiplicative
Gaussian noise, as shown in (15), where the noise strength ns
is set as 0.1, 0.5, and 1.0 to simulate slight, moderate, and
severe noise, respectively

fnoisy(x) = f (x)× ens×Nor(0,1). (15)

1) Comparison With Baseline Algorithm Without Noise
Handling Technique: To demonstrate the effectiveness of the
proposed method for noisy optimization, we first consider
the original SCSS-L-SHADE as a baseline. Tables S8–S10
in the supplementary file show the comparison results in the
cases with slight, moderate, and severe noise, respectively,
while Table VIII collects the results. From Table VIII, DTDEn
advances the baseline with the “W/L” metric of “63/5,” “65/9,”
and “71/15” in the three cases, respectively.

According to the proposed mechanism in DTDEn, DT
is performed from the beginning only when the noise is
severe. While DTDE is performed in the slight and mod-
erate noise cases. To show the effectiveness, we consider
the following modifications: in the slight and moderate noise
cases, DT is performed for the entire evolution process
and the resultant variants, are denoted as DTo_slight and
DTo_moderate, respectively. From Table S11 in the sup-
plementary file, the comparison results (“W/L” metric) of
DTo_slight and DTo_moderate with the baseline are “16/11”
and “18/9,” respectively. Considering the severe noise case,
from Table S10, the “W/L” result of DTDEn (equivalent
to DTo_severe) is “22/6.” With these results, the follow-
ing conclusions could be drawn: 1) comparing DTDEn with
DTo_slight and DTo_moderate, DTDEn exhibits much better
performance as the “W/L” metric against the baseline is “18/2”

TABLE IX
COMPARISON RESULTS WITH RESAMPLING METHOD IN NOISY

OPTIMIZATION WITH SLIGHT, MODERATE, AND SEVERE NOISE

TABLE X
COMPARISON RESULTS WITH STATE-OF-THE-ART DES IN NOISY

OPTIMIZATION WITH SLIGHT, MODERATE, AND SEVERE NOISE

and “19/3,” respectively and 2) as the noise strength increases,
the superiority of DT becomes more significant.

To determine the threshold value T, which is used to identify
noise strength, we investigate the performance of DTo and
DTDE with ns set from 0.5 to 1.0 with a step of 0.1. As we
have known, when ns is set as 0.5, DTDE is better while when
ns is set as 1, DTo is better. Therefore, T is set according to the
smallest ns value where DTo performs better than DTDE. That
is, ns = 0.7 and thus T = 0.93 according to experiments.

2) Comparison With Resampling Method: The proposed
DT methodology is further compared with a classic noise han-
dling technique, i.e., the resampling method, in which each
solution is evaluated for ST times and the average noisy fit-
ness is treated as the final noisy fitness. As for the baseline
algorithm, we have tested ST = {2, 3, 4, 5}, from which ST
= 2 performs the best and is adopted as the preferred set-
ting. Tables S12–S14 in the supplementary file present the
comparisons in the slight, moderate, and severe noise cases,
respectively. As summarized in Table IX, DTDEn generally
yields better performance than the resampling method. As
for the resampling method, since extra function evaluations
are needed for multiple samplings, the maximum number of
generations significantly reduces. While it is not the case in
DT. The overall performance ranking of the baseline, resam-
pling, and DTDEn given by the Friedman test is 2.49, 2.28,
and 1.23, respectively, from which it is seen that resam-
pling performs better than the baseline while the performance
advancement by DT is much more significant.

3) Comparison With State-of-the-Art DEs: It is also
interesting to compare the performance variations of state-of-
the-art DEs in the presence of noise. To this end, we consider
three top-performing DEs, i.e., EaDE, jSO, and L-SHADE-
RSP. As shown in Tables S15–S17 in the supplementary file
and Table X, DTDEn performs much better with the total “W”
count significantly larger than the “L” count in all the three
cases. Moreover, comparing Table X with Table II, it is seen
that the superiority of DT-based DE over the three DEs is much
more significant in the noisy scenario. This further confirms
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TABLE XI
COMPARISON RESULTS WITH POPULAR NOISY OPTIMIZATION

ALGORITHMS WITH SLIGHT, MODERATE, AND SEVERE NOISE

the effectiveness and contribution of DT, which makes DTDEn
more resistant to noise.

4) Comparison With Popular Noisy Evolutionary
Algorithms: DTDEn has also been compared against several
popular NEAs to demonstrate its performance. Among them,
ODE [64] and MUDE [69] integrate opposition-based learn-
ing and memetic search for noisy optimization, respectively.
IPOP-UH-CMA-ES [63] is an improved IPOP-CMA-ES algo-
rithm incorporated with an uncertainty handling technique.
BBPSO_CJ [67] is a Bare bones PSO variant with chaotic
jumps and DEPSO [70] is a dual-environmental PSO with
weighted search center. As is evident from Tables S18–S20
in the supplementary file and Table XI, DTDEn outperforms
in more than 70 cases and underperforms in no more than
12 cases compared with each of the competitors.

VI. CONCLUSION

To deal with the premature convergence and stagnation
of DE and accelerate the population convergence, this arti-
cle proposes the DT for fitness landscape analysis. DT first
transforms the current evolution information to the frequency
domain, which facilitates the easy observation of the compo-
nents. Afterward, the top highest frequencies are removed in
the frequency domain to smooth the landscape. Finally, the
remaining frequencies are transformed back to the original
domain. With the deletion operation in the frequency domain,
the transformed fitness landscape is beneficial for escaping
from local minima and stagnation. To merge the advantages of
transformed and original fitness on multimodal and unimodal
functions, an evolution difficulty-based utilization mechanism
has also been developed. DT has been incorporated into several
baseline DEs and DT-based variants have been proposed.

Experiments on the test functions show that DT vari-
ants yield significant advancements when compared with
the baselines. They also exhibit overall better performance
than the other six state-of-the-art DEs, namely, EB-LSHADE,
PaDE, EaDE, L-SHADE_cnEpSin, jSO, and L-SHADE-
RSP. Particularly, the superiority on several functions is
remarkable as it achieves the best-so-far DE performance.

The working mechanism of DTDE has also been studied
with investigations on the population diversity and population
successful update rate. According to the experiments, DT

significantly improves the population’s successful update rate
and accelerates the population convergence. The rationale
behind its capability of escaping from stagnation has also been
explained.

The DT method has also been extended to noisy
optimization. Experiments confirm its superiority over the
baseline algorithm, the classic resampling method, which is
widely adopted in noisy optimization literature, state-of-the-art
DEs, as well as popular NEAs.

In the current study, the Fourier transform is served as
the DT method. Further analysis of fitness landscape feature
for selecting transformation methods in an ad hoc manner
deserves studies. We will investigate other methods, such as
the wavelet transform [90]. Besides, future works might also
consider the derived fitness landscape feature with the assis-
tance of DT for selecting appropriate strategies or algorithms.
Finally, extending the DT method to other types of optimiza-
tions, such as multiobjective [91], multitasking [92], [93], and
other types of EAs are also interesting directions.

REFERENCES

[1] J. D. Ser et al., “Bio-inspired computation: Where we stand and what’s
next,” Swarm Evol. Comput., vol. 48, pp. 220–250, Aug. 2019.

[2] M. T. Hagan and M. B. Menhaj, “Training feedforward networks with
the Marquardt algorithm,” IEEE Trans. Neural Netw., vol. 5, no. 6,
pp. 989–993, Nov. 1994.

[3] K. Price, R. Storn, and J. Lampinen, Differential Evolution: A Practical
Approach to Global Optimization. Berlin, Germany: Springer-Verlag,
2005.

[4] S. Das, S. S. Mullick, and P. N. Suganthan, “Recent advances in differ-
ential evolution—An updated survey,” Swarm Evol. Comput., vol. 27,
pp. 1–30, Apr. 2016.

[5] R. D. Al-Dabbagh, F. Neri, N. Idris, and M. S. Baba, “Algorithm design
issues in adaptive differential evolution: Review and taxonomy,” Swarm
Evol. Comput., vol. 43, pp. 284–311, Dec. 2018.

[6] K. R. Opara and J. Arabas, “Differential evolution: A survey of
theoretical analyses,” Swarm Evol. Comput., vol. 44, pp. 546–558,
Feb. 2019.

[7] S. Zhou, L. Xing, X. Zheng, N. Du, L. Wang, and Q. Zhang, “A self-
adaptive differential evolution algorithm for scheduling a single batch-
processing machine with arbitrary job sizes and release times,” IEEE
Trans. Cybern., vol. 51, no. 3, pp. 1430–1442, Mar. 2021.

[8] X.-G. Zhou, C.-X. Peng, J. Liu, Y. Zhang, and G.-J. Zhang,
“Underestimation-assisted global-local cooperative differential evolution
and the application to protein structure prediction,” IEEE Trans. Evol.
Comput., vol. 24, no. 3, pp. 536–550, Jun. 2020.

[9] K. Michalak, “Low-dimensional Euclidean embedding for visualiza-
tion of search spaces in combinatorial optimization,” IEEE Trans. Evol.
Comput., vol. 23, no. 2, pp. 232–246, Apr. 2019.

[10] K. Yu, J. Liang, B. Qu, Y. Luo, and C. Yue, “Dynamic selection
preference-assisted constrained multiobjective differential evolution,”
IEEE Trans Syst., Man, Cybern., Syst., vol. 52, no. 5, pp. 2954–2965,
May 2022.

[11] A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential evolution
algorithm with strategy adaptation for global numerical optimization,”
IEEE Trans. Evol. Comput., vol. 13, no. 2, pp. 398–417, Apr. 2009.

[12] W. Gong, Á. Fialho, Z. Cai, and H. Li, “Adaptive strategy selection in
differential evolution for numerical optimization: An empirical study,”
Inf. Sci., vol. 181, no. 24, pp. 5364–5386, 2011.

[13] G. Wu, R. Mallipeddi, P. N. Suganthan, R. Wang, and H. Chen,
“Differential evolution with multi-population based ensemble of muta-
tion strategies,” Inf. Sci., vol. 329, pp. 329–345, Feb. 2016.

[14] S. X. Zhang, S. Y. Zheng, and L. M. Zheng, “An efficient multiple
variants coordination framework for differential evolution,” IEEE Trans.
Cybern., vol. 47, no. 9, pp. 2780–2793, Sep. 2017.

[15] J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer, “Self-
adapting control parameters in differential evolution: A comparative
study on numerical benchmark problems,” IEEE Trans. Evol. Comput.,
vol. 10, no. 6, pp. 646–657, Dec. 2006.

Authorized licensed use limited to: Jinan University. Downloaded on January 02,2024 at 16:06:34 UTC from IEEE Xplore.  Restrictions apply. 



1454 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 27, NO. 5, OCTOBER 2023

[16] J. Zhang and A. C. Sanderson, “JADE: Adaptive differential evolution
with optional external archive,” IEEE Trans. Evol. Comput., vol. 13,
no. 5, pp. 945–958, Oct. 2009.

[17] R. Tanabe and A. Fukunaga, “Success-history based parameter adap-
tation for differential evolution,” in Proc. IEEE Congr. Evol. Comput.,
Jun. 2013, pp. 71–78.

[18] L. Tang, Y. Dong, and J. Liu, “Differential evolution with an individual-
dependent mechanism,” IEEE Trans. Evol. Comput., vol. 19, no. 4,
pp. 560–574, Aug. 2015.

[19] G. Sun, Y. Cai, T. Wang, H. Tian, C. Wang, and Y. Chen, “Differential
evolution with individual-dependent topology adaptation,” Inf. Sci.,
vol. 450, pp. 1–38, Jun. 2018.

[20] S. X. Zhang, W. S. Chan, Z. K. Peng, S. Y. Zheng, and K. S. Tang,
“Selective-candidate framework with similarity selection rule for evo-
lutionary optimization,” Swarm Evol. Comput., vol. 56, Aug. 2020,
Art. no. 100696.

[21] T. Jones and S. Forrest, “Fitness distance correlation as a measure of
problem difficulty for genetic algorithms,” in Proc. Int. Conf. Genet.
Algorithms (ICGA), vol. 95. Pittsburgh, PA, USA, 1995, pp. 184–192.

[22] M. Lunacek and D. Whitley, “The dispersion metric and the CMA evolu-
tion strategy,” in Proc. 8th Annu. Conf. Genet. Evol. Comput. (GECCO),
Seattle WA, USA, 2006, pp. 477–484.

[23] M. Wang, B. Li, G. Zhang, and X. Yao, “Population evolvability:
Dynamic fitness landscape analysis for population-based metaheuristic
algorithms,” IEEE Trans. Evol. Comput., vol. 22, no. 4, pp. 550–563,
Aug. 2018.

[24] H. Lu, J. Shi, Z. Fei, Q. Zhou, and K. Mao, “Measures in the
time and frequency domains for fitness landscape analysis of dynamic
optimization problems,” Appl. Soft Comput., vol. 51, pp. 192–208,
Feb. 2017.

[25] L. Shen and J. He, “A mixed strategy for evolutionary programming
based on local fitness landscape,” in Proc. IEEE Congr. Evol. Comput.,
Barcelona, Spain, 2010, pp. 1–8.

[26] Y. Huang, W. Li, C. Ouyang, and Y. Chen, “A self-feedback strat-
egy differential evolution with fitness landscape analysis,” Soft Comput.,
vol. 22, pp. 7773–7785, Aug. 2018.

[27] W. Li, S. Li, Z. Chen, L. Zhong, and C. Ouyang, “Self-feedback differen-
tial evolution adapting to fitness landscape characteristics,” Soft Comput.,
vol. 23, no. 4, pp. 1151–1163, 2019.

[28] Z. Tan, K. Li, and Y. Wang, “Differential evolution with adaptive muta-
tion strategy based on fitness landscape analysis,” Inf. Sci., vol. 549,
pp. 142–163, Mar. 2021.

[29] K. M. Sallam, S. M. Elsayed, R. A. Sarker, and D. L. Essam,
“Landscape-based adaptive operator selection mechanism for differential
evolution,” Inf. Sci., vols. 418–419, pp. 383–404, Dec. 2017.

[30] M. Yang, C. Li, Z. Cai, and J. Guan, “Differential evolution with auto-
enhanced population diversity,” IEEE Trans. Cybern., vol. 45, no. 2,
pp. 302–315, Feb. 2015.

[31] J. Lampinen and I. Zelinka, “On stagnation of the differential evolution
algorithm,” in Proc. 6th Int. Mendel Conf. Soft Comput., Jun. 2000,
pp. 76–83.

[32] S.-M. Guo, C.-C. Chang, P.-H. Hsu, and J. S.-H. Tsai, “Improving dif-
ferential evolution with successful-parent-selecting framework,” IEEE
Trans. Evol. Comput., vol. 19, no. 5, pp. 717–730, Oct. 2015.

[33] A. P. Piotrowski, “Differential evolution algorithms applied to neural
network training suffer from stagnation,” Appl. Soft Comput., vol. 21,
pp. 382–406, Aug. 2014.

[34] P. Rakshit, A. Konar, and S. Das, “Noisy evolutionary optimization
algorithms—A comprehensive survey,” Swarm Evol. Comput., vol. 33,
pp.18–45, Apr. 2017.

[35] G. Wu, R. Mallipeddi, and P. N. Suganthan, “Ensemble strategies
for population-based optimization algorithms—A survey,” Swarm Evol.
Comput., vol. 44, pp. 695–711, Feb. 2019.

[36] R. Tanabe and A. Fukunaga, “Reviewing and benchmarking parameter
control methods in differential evolution,” IEEE Trans. Cybern., vol. 50,
no. 3, pp. 1170–1184, Mar. 2020.

[37] L. M. Zheng, S. X. Zhang, K. S. Tang, and S. Y. Zheng, “Differential
evolution powered by collective information,” Inf. Sci., vol. 399,
pp. 13–29, Aug. 2017.

[38] K. Qiao, J. Liang, B. Qu, K. Yu, C. Yue, and H. Song, “Differential
evolution with level-based learning mechanism,” Complex Syst. Model.
Simulat., vol. 2, no. 1, pp. 35–58, Mar. 2022.

[39] S. Das et al., “Differential evolution using a neighborhood-based muta-
tion operator,” IEEE Trans. Evol. Comput., vol. 13, no. 3, pp. 526–553,
Jun. 2009.

[40] R. Mallipeddi, P. Suganthan, Q. Pan, and M. Tasgetiren, “Differential
evolution algorithm with ensemble of parameters and mutation strate-
gies,” Appl. Soft Comput., vol. 11, no. 2, pp. 1679–1696, 2011.

[41] Q. Fan and X. Yan, “Self-adaptive differential evolution algorithm with
zoning evolution of control parameters and adaptive mutation strategies,”
IEEE Trans. Cybern., vol. 46, no. 1, pp. 219–232, Jan. 2016.

[42] S. X. Zhang, W. S. Chan, K. S. Tang, and S. Y. Zheng, “Adaptive
strategy in differential evolution via explicit exploitation and exploration
controls,” Appl. Soft Comput., vol. 107, Aug. 2021, Art. no. 107494.

[43] Y. Wang, Z. Cai, and Q. Zhang, “Differential evolution with composite
trial vector generation strategies and control parameters,” IEEE Trans.
Evol. Comput., vol. 15, no. 1, pp. 55–66, Feb. 2011.

[44] W. Gong, A. Zhou, and Z. Cai, “A multi-operator search strategy based
on cheap surrogate models for evolutionary optimization,” IEEE Trans.
Evol. Comput., vol. 19, no. 5, pp. 746–758, Oct. 2015.

[45] X. Zhou and G. Zhang, “Differential evolution with underestimation-
based multimutation strategy,” IEEE Trans. Cybern., vol. 49, no. 4,
pp. 1353–1364, Apr. 2019.

[46] R. Tanabe and A. S. Fukunaga, “Improving the search performance of
SHADE using linear population size reduction,” in Proc. IEEE Congr.
Evol. Comput., Beijing, China, 2014, pp. 1658–1665.

[47] J. Brest, M. S. Maučec, and B. Bošković, “Single objective real-
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