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1. Introduction 

 Differential evolution (DE) proposed by Storn and Price [1] 

has become one of the most efficient evolutionary algorithms 

for solving continuous global optimization problems 

[2][3][4][5][6]. With its simplicity, straightforward 

implementation, and impressive computational efficiency, DE 

has garnered widespread utilization across a multitude of 

practical domains [2][3] from engineering and finance to data 

science and artificial intelligence. Inspired by biological 

evolution, DE predominantly comprises three genetic 

operations: mutation, crossover, and selection, which are based 

on a random population. Mutation first perturbs a base vector 

with one or more differential vectors to generate a mutant vector, 

introducing new genetic materials. Crossover then forces gene 

exchanges between the mutant vector and the current vector to 

generate a trial vector, which controls the percentage of the 

utilization of the current information from the current vector 

and the new information from the mutant vector. Selection 

finally determines the fitter one between the trial vector and the 

current vector for the next generation. Among them, mutation 

and crossover determine the generation of the trial vector from 

the current vector and significantly influence the performance.  

In the past two decades, DE has been enhanced by 

developing new mutation [7][8][9] and crossover [10][11] 

operations and better adjusting the control parameters [9] 

[12][13][14] including mutation factor, crossover rate and 

population size. Initially, extensive efforts were dedicated to 

fine-tuning the control parameter configurations to achieve 

more desirable results. However, researchers soon realized that 

a fixed parameter setting could not yield optimal solutions for 

all types of problems [9]. Moreover, the exhaustive trial-and-

error process required to determine the best configuration was 

time-consuming and laborious. To overcome these limitations, 

various adaptive parameter methods have been developed [12]. 

These methods offer a flexible and runtime-dependent approach 

to parameter tuning. Instead of relying on a predetermined set 

of values, they enable an algorithm to dynamically adjust its 

own parameters based on the evolution of the population.  

As optimization problems become increasingly diverse and 

with the emergence of challenges like multimodal problems, it 

has become evident that focusing solely on adapting control 

parameters is insufficient. In response, researchers have also 

paid attention to improving the efficiency of the operators [7]. 

The mutation and crossover operators play crucial roles in 

exploring and exploiting the search space to navigate towards 

optimal solutions. Various operators [8][9][10][11] have been 

proposed to enhance exploration and exploitation capabilities. 

Moreover, when dealing with complex optimization problems, 

particularly those with varying characteristics at different stages, 

an algorithm needs to meet diverse requirements. In the face of 

these challenges, it is crucial to have the flexibility to adapt 

search strategies. For example, in the initial exploration phase, 

when the search space is vast and relatively unexplored, an 

algorithm may prioritize global exploration to identify potential 

promising regions. Conversely, in the later stages, when 

localized regions of interest are identified or when convergence 
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towards the optimal solution is desired, an algorithm might shift 

towards a more exploitative strategy focusing on intensifying 

the search within these regions. Additionally, certain problems 

may require a fine balance between exploration and 

exploitation throughout the entire optimization process to avoid 

getting stuck in local optima which may result in poor solutions. 

Evolutionary experiments in DE generate trial vectors that 

not only propagate better individuals to the next generation but 

also provide valuable information for further adjusting search 

strategies to enhance efficiency. In general, we summarize the 

existing strategy adaptation mechanisms into three categories. 

The first category is based on strategy competition and the 

derived successful experiences [15][16][17]. Various 

competition mechanisms have been developed, such as 

memory-based [15], multi-population ensemble-based [16] and 

adaptive parameter control method-based [17] ones. The basic 

idea is that a strategy that generates successful trial vectors (i.e., 

offspring) is promising and should gain more opportunities for 

further generating offspring. The second category involves 

adaptation methods based on the observation of certain 

characteristics, such as fitness values [18] or population states 

[19]. With the observation, convergence and diversity 

requirements are identified, and strategies could be assigned 

accordingly. The third category adapts strategies based on pre-

selection rule. Multiple candidates are generated by multiple 

strategies first, and then one of the candidates is filtered as the 

trial vector by rules such as fitness evaluation [20], surrogate 

model [21] and similarity selection rule [22].  

Although significant advances have been achieved by these 

works, the search feedback particularly the evolutionary scale 

in the solution space which could be utilized for performance 

improvement has not been fully utilized to adjust the search 

strategy. This motivates the proposal of the evolutionary scale 

adaptation (ESA) in this paper. In ESA, the successful 

evolutionary scale between the target vectors and trial vectors 

is first measured, which is normalized as an evolutionary scale 

indicator. A large and a small indicator value means that a large 

and a small evolutionary scale tends to be more promising 

respectively and will then be considered in the offspring 

generation. Experimental results demonstrate the effectiveness 

of ESA for strategy adaptation and its superior performance 

over several classic and state-of-the-art strategy adaptation 

methods.  

The rest of this paper is organized as follows. Section 2 

briefly describes the basic procedures of DE, along with a 

review of multi-strategy adaptation methods. The details of the 

proposed approach are described in Section 3. In Section 4, we 

compare and analyze the experimental results on benchmark 

functions and real-world problems to assess the performance 

and effectiveness. Finally, Section 5 is devoted to conclusions. 

2. Background 

2.1 Differential evolution  

At the beginning, DE initializes a population according to Eq. 

(1): 

( ), ,0 , (0,1) , 1,  2  ...,i j j i j j jx x rand x x i NP= +  − = ，   (1) 

where xi,j,0 represents the j-th dimension of the i-th individual 

at the initial generation, jx and jx are the lower and upper 

bounds of the j-th dimension respectively and randi,j(0,1) is a 

uniformly distributed random number within [0, 1]. There are 

NP individuals, and each individual is a D-dimensional vector.  

Mutation: Mutation is performed to generate a mutant vector 

Vi,g by multiplying a scaling factor F with one or more 

differential vectors, which is then added to a base vector. 

Several common mutation strategies are as follows: 

“DE/rand/1”: 

( )
1 2 3, , , ,i g r g r g r gF= +  −V X X X  (2) 

“DE/best/1”: 

( )
1 2, , , ,i g best g r g r gF= +  −V X X X  

(3) 

 

“DE/current-to-pbest/1”: 

( ) ( )
1 2, , , , , ,i g i g pbest g i g r g r gF F= +  − +  −V X X X X X  (4) 

where r1, r2, r3 and i are mutually different random integers 

from the range of [1, NP]. ,best gX  and ,pbest gX  are the fittest and 

one of the top 100p% fittest solutions from the current 

population. “DE/rand/1” is based on a random search variation, 

“DE/best/1” focuses on searching around the best solution 

while “DE/current-to-pbest/1” guides the target solution 

towards ,pbest gX . 

Crossover: Following mutation, a trial vector Ui, g is 

generated by exchanging the dimensions between the mutant 

vector Vi, g and the target (current) vector Xi, g with a crossover 

operation. The classic binomial crossover is as follows: 

 

, , ,

, ,

, ,

if  (0,1)  or 

otherwise

i j g i j rand

i j g

i j g

v rand CR j j
u

x

 =
= 
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 (5) 

 

where the crossover rate CR determines the probability of 

replacing the dimensions of the target vector with the 

corresponding dimensions of the mutant vector. The presence 

of the random index jrand which is a random integer from [1, D] 

ensures that at least one dimension of Ui, g comes from Vi, g.  

Selection: After crossover, the fitness f(Ui, g) of each trial 

vector is evaluated. During the selection, f(Ui, g) is compared 

with the fitness f(Xi, g) of the target vector. The better one will 

be retained as a target vector for the next generation. The 

selection operation for a minimization problem is as follows:  

 

( ) ( )

( ) ( )
, , ,
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, , ,

if 
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i g i g i g
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i g i g i g

f f

f f
+

 
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

U U X
X

X U X
 (6) 

 

2.2 Multi-strategy adaptation 

Different types of strategy adaptation methods have been 

proposed for DE to adjust the search behavior at different 

evolutionary stages to better fit the optimization, some of which 

are summarized as follows: 

 

(1) Multi-strategy method based on competition 
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This type of method adjusts strategies based on the success 

experience of strategies involved in the competition of 

generating successful offspring. In strategy adaptive DE 

(SaDE) [15], four different strategies are selected to form a 

candidate pool, and a suitable mutation strategy is chosen based 

on the success rate obtained from a learning period. In ensemble 

of parameter and strategy DE (EPSDE) [23] , there are 

parameter and strategy candidate pools respectively, which are 

randomly configured together, and if successful, they are 

retained. In multi-population ensemble DE (MPEDE) [16], the 

population is divided into sub-populations, with each sub-

population applying different mutation strategies, and the 

strategy with the most fitness improvements is assigned to a 

reward sub-population. In strategy adaptation mechanism (SaM) 

[17], each strategy is assigned an index, and the strategy 

adaptation is treated as a parameter adaptation problem. In 

multiple variants coordination (MVC-DE) [24], different DE 

variants are adaptively utilized in different evolutionary 

segments. In chaotic local search-based DE (CLSDE) [25], 

different kinds of chaotic local search are adaptively employed 

in the evolutionary process. 
 

(2) Multi-strategy method based on observation 

This type of method allocates strategies based on the 

information derived from the population, such as the fitness and 

the evolutionary status of the population. Fitness ranking has 

been successfully applied for developing new mechanisms.  In 

[18], Tang et al. proposed an individual-dependent DE (IDE), 

which includes an individual-dependent parameter mechanism 

for setting control parameters and an individual-dependent 

mutation strategy mechanism for adjusting mutation strategies. 

In [26], Cui et al. presented a self-adaptive DE where the 

population is divided into sub-populations based on fitness, and 

each sub-population owns a specific mutation strategy. In [27], 

Mohamed et al. introduced two novel mutation strategies, and 

the selection of the vectors in the mutation strategies is based 

on fitness ranking. In historical and heuristic-based DE (HHDE) 

[28], the assignment of mutation strategy for each solution 

depends on both successful experience and fitness ranking. In 

multi-layer competitive-cooperative DE (MLCCDE) [29], 

strategies and computing resources are allocated according to 

the fitness ranking. In objective and dimension feedback DE 

(ODFDE) [30], search information collected from the objective 

and dimension spaces is utilized to assign strategies at the 

dimensional level. Besides fitness, population information has 

also been utilized for adjusting search strategies. In 

neighborhood-based DE (NDE) [31], strategies are employed 

according to the neighborhood information of each current 

solution. In explicit adaptive DE (EaDE) [32], the comparison 

of fitness improvements between superior and inferior 

individuals serves as an indicator for strategy adaptation.  

 

(3) Multi-strategy method based on pre-selection rule 

This type of method generates multiple trial vectors by 

utilizing multiple strategies, and one of them is selected as the 

final trial vector using pre-selection rules. In composite DE 

(CoDE) [20], three trial vectors are randomly generated by 

combining strategies and parameters from candidate pools, and 

the best one in terms of fitness is selected and compared with 

the target vector to update the population. In cheap surrogate 

model-based DE (CSM-DE) [21], multiple trial vectors are 

evaluated using a cheap surrogate model, and one of them is 

selected as the final trial vector. In underestimation-based 

multi-mutation DE (UM-DE) [33], offspring selection relies on 

the underestimation model. In selective-candidate framework 

with a similarity selection rule-based DE (SCSS-DE) [22], the 

selection of the final trial vectors is based on the fitness ranking 

and the Euclidean distance between target vectors and trial 

vectors. In global-local cooperate DE (GLCDE) [34], trial 

vectors are generated using different types of strategies and 

evaluated with an improved underestimation model. In 

ensembling populations-based JADE (EJADE) [35], two sets of 

mutation and crossover operators are employed to generate 

offspring, and the fitter one is filtered as the final trial vector.  

3 Proposed method 

The proposed ESADE consists of two mechanisms: the 

successful scale estimation (SSE) mechanism and the 

evolutionary scale adaptation (ESA) mechanism. 

 

3.1 Successful scale estimation  

The successful scale estimation (SSE) mechanism measures 

the successful scale of the evolutionary process by evaluating 

how far the successful trial vectors deviate from their target 

vectors. Specifically, it calculates the Euclidean distance 

between the trial vector and its corresponding target vector at 

each generation as follows: 

 

 
, , , || ||,  1, 2,...,i g i g i gd i NP= − =U X      (7) 

   

Then, the NP distance values are sorted in ascending order 

and assigned a ranking index γi, where γi = 1 and γi = NP 

represent the smallest and largest distances respectively. 

Following, γi is normalized to ensure that it falls within a 

specific range, typically between 0 and 1 by Eq. (8): 

 

 
= i

i
NP


      (8) 

Subsequently, if the fitness value of a trial vector is better 

than that of its corresponding target vector, the normalized rank 

index γ of the successful trial vector is saved to the set M, as 

follows: 

 

 
 

( ) ( ), ,if   
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(9) 

 

By saving the γ values of successful trial vectors, SSE can 

capture the information about the appropriate evolutionary 

scale for generating improved solutions. Finally, the weighted 

Lehmer mean  of M is calculated as follows: 
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(11) 

 

where Mm is the m-th element of M, 
, ,( ) ( )m mk g mk gf f f = −U X  

and mk is the index of the current solution corresponding to m. 

mw is used to emphasize the contributions of large fitness 

improvements.  named appropriate evolutionary scale factor, 

provides a quantitative measure of the suitability and potential 

of different evolutionary scales for different optimization 

problems or even different evolutionary stages. In some 

problems or at certain evolutionary stages, a smaller 

evolutionary scale tends to be successful. In this case, the 

successful γ values are relatively small, and thus the  is 

relatively small. In the other case, a larger evolutionary scale is 

more promising for generating successful solutions and thus the 

 is relatively large. Therefore,  measures whether a large or 

small scale is appropriate. With the above procedures, the 

pseudo-code of SSE is shown in Algorithm 1.  

 

Algorithm 1: SSE  

Input: Xg: current population at generation g;  

Ug : trial population at generation g;   

NP: population size;  

M = :  M is initialized as empty. 

Output:  : appropriate evolutionary scale factor.  

1: For i = 1 : NP 

2:     Calculate the distance di by Eq. (7); 

3:  End For 

4:  Sort d in ascending order and obtain the normalized ranking 

γ by Eq. (8); 

5: For i = 1 : NP 

6:     If f(Ui, g) ≤  f(Xi, g) 

7:           
i M → ;  

8:     End If 

9:  End For 

10: Calculate the appropriate evolutionary scale factor   by 

Eq. (10). 

 

3. 2 Evolutionary scale adaptation  

   In DE, a generation strategy refers to how the trial vectors are 

generated, introducing new genetic materials to explore the 

searching space. However, if the strategy is too random or too 

greedy, it would lead to a loss of directionality or suboptimal 

solutions. To address this issue, the proposed evolutionary scale 

adaptation (ESA) mechanism dynamically adjusts the 

greediness of the optimization based on the current search 

requirement. An evolutionary scale indicator  is introduced to 

measure the degree of successful evolution in the solution space. 

 is initialized at the beginning and updated at each generation 

by utilizing the appropriate evolutionary scale factor 

according to Eq. (12), where a = 0.1 is a constant. 

 

 (1 )a a  = −  +   (12) 

 

     If  is smaller than a preset threshold T, it indicates that the 

recently successful individuals have small γ and a small 

evolutionary scale is more favorable. In this case, for generating 

offspring, a closer one from each current solution would be 

more promising to narrow down the search range. Otherwise, if 

 ≥ T, a farther one from each current solution is more 

preferred to expand the search range.  

With the above considerations, the pseudo-code of ESA is 

shown in Algorithm 2. Lines 1−3 calculate the distance 

between each current solution and each of the corresponding 

generated trial solutions by K candidate strategies. The 

generation strategy herein is a generalized concept of the 

procedure of producing trial vectors from target vectors, which 

could be the low-level ones, such as the mutation and crossover 

strategy, or the high-level ones, such as different DE variants. 

Line 4 compares  with T to determine the choice of a small or 

large evolutionary scale. If  < T, then for each current 

solution, the closest trial solution with the smallest evolutionary 

scale is selected as the final offspring (lines 6 and 7). Otherwise, 

the farthest trial solution with the largest evolutionary scale is 

selected as the final offspring (lines 11 and 12). The offspring 

is evaluated in line 15 and then  is calculated in line 16. 

Finally, line 17 updates  by using Eq. (12). Note that if the 

exploitation and exploration features of the generation 

strategies are known, lines 1−3 could be removed, and lines 

5−8 and lines 10−13 could be replaced by the offspring 

generation of an exploitative and an explorative strategy 

respectively. 

 

Algorithm 2: ESA 

Input: Xg: current population at generation g;  

Zk
, g (k = 1, 2, ···, K): the K trial population generated by 

K strategies at generation g;   

NP: population size;  

 : evolutionary scale indicator; 

T:  threshold for  ; 

a:  a constant for updating  . 

Output:  U: final offspring;  

 : updated evolutionary scale indicator. 

1: For i = 1 : NP 

2:   Measure the distance Li
k between Xi, g and each of the 

corresponding trial solutions Zi
k
, g (k = 1, 2, ···, K); 

3:  End For 

4: If  < T  

5:     For i = 1 : NP 

6:           argmin( );k

i
k

index L=  

7:           Ui, g = Zi
index

, g; 

8:     End For 

9: Else 

10:   For i = 1 : NP 

11:         argmax( );k

i
k

index L=  

12:         Ui, g = Zi
index

, g; 
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13:   End For 

14: End If 

15:  Evaluate the fitness of Ug; 

16:  Calculate  according to SSE (Algorithm 1); 

17: Update (1 )a a  = −  +  . 

  
3.3 Overall framework 

   Based on ESA, the overall framework of evolutionary scale 

adaptive DE (ESADE) is shown in Algorithm 3. Line 1 

initializes the population. Afterwards, at each generation g, line 

3 first performs the generation procedure given by the K 

strategies to generate K trial population. Line 4 then performs 

the ESA method to obtain the final offspring for each individual 

and update the evolutionary scale indicator   . Finally, DE’s 

selection is performed between Xg and Ug (line 5).  

 

Algorithm 3: ESADE 

Input:  K strategies; 

 = 0.5: initial value for  ; 

T:  threshold for  ; 

gmax: maximum number of generations. 
Output:  xb: found best solution. 

1:  Initialize the population X0, set the generation count g = 0; 

2:  While g ≤ gmax 

3:  Perform DE’s mutation and crossover given by the K 

strategies for Xg to generate K trial population Zk
 g (k = 1, 

2, ···, K); 

4:    Perform ESA (Algorithm 2) to obtain the final offspring 

Ug and update the evolutionary scale indicator  ; 

5:   Perform DE’s selection between Xg and Ug to obtain the 

population Xg+1 for the next generation; 

6:     g = g +1; 

7:  End While 

8:  Obtain the best solution xb from the final population. 

 
3.4 Novelty of ESA 

   With the above descriptions, we would like to highlight the 

novelty and contribution of the proposed ESA method.  

(1) ESA utilizes the successful evolutionary scale in the 

solution space for strategy adaptation, which is 

commonly neglected in the existing multi-strategy 

adaptation methods for DE.  

(2) Most multi-strategy adaptation methods are based on the 

competition of strategies and the derived successful 

experience of each strategy. While ESA focuses on the 

evolutionary scale instead of the identity of the strategy.  

(3) The final offspring in ESA is adaptively selected from the 

candidate solutions by the distance measure, which 

explicitly controls the evolutionary scale of each solution. 

Although some multi-strategy methods [36][22] also 

considered the distance between trial vectors and target 

                                                                    
1  The source code of ESADE is publicly available at 

https://zsxhomepage.github.io 

vectors, ESA owns significant differences. In [36], Bujok 

proposed to use the farthest trial vectors from target 

vectors when the ratio FES/maxFES is relatively small 

and to use the closest trial vectors from the fittest solution 

otherwise, where FES is the currently consumed function 

evaluations and maxFES is the maximum function 

evaluations. Therefore, the adjustment of mutation 

strategy in [36] depends on the evolutionary process and 

is not in an adaptive manner. In [22], the pre-selection of 

the closest or farthest trial vectors from target vectors is 

based on the fitness ranking of target vectors. Thus, it is 

also not an adaptive method that could dynamically adjust 

strategy according to different problems. 

   

3.5 Time complexity 

The complexity of generating the K candidates is O(K•NP•D), 

while the distance calculation between the candidates and the 

corresponding current solution is O(K•NP•D). The complexity 

of the distance ranking is O(NP•log2NP). Thus, the overall time 

complexity of ESA at one generation is O(K•NP•D + NP•log2 

NP). And it becomes O(NP•D + NP•log2NP) if the exploitation 

and exploration features of the generation strategies are known. 

4 Simulation 

In this section, experiments are performed to verify the 

effectiveness of the proposed ESA method. The CEC2017 

benchmark suite [37], which consists of 29 functions is 

employed. Functions F1 and F3 are unimodal functions while 

F4−F10 are simple multimodal functions. F11−F20 are hybrid 

functions and F21−F30 are composition functions. The 

performance of an algorithm is evaluated by the solution error 

value SE, which is defined as f(x) − f(x*), where x represents 

the best solution found with the maximum number of function 

evaluations of 10,000 × D and x* is the optimal solution. For 

each algorithm on each problem, 51 runs are performed, and the 

mean and standard deviation of SE are reported. In addition, the 

Wilcoxon rank-sum test [38] at a significance level of 0.05 is 

used to test the statistical significance of the performance 

between two algorithms. The results denoted as “+/=/−” 

indicate that our algorithm performs significantly better than 

(i.e., win), comparable to (i.e., tie), or worse than (i.e., lose) the 

compared algorithm respectively. The parameter T of ESA is 

set to 0.5.  

 

4.1 Effectiveness of ESA  

   To validate the effectiveness of ESA, it is first incorporated 

into two baseline DEs, i.e., the jSO [39] and the L-

SHADE_cnEpsin [40] algorithms. The resultant variant 

ESADE1 is respectively compared with the baselines. Note that 

the selection of strategies for ESA is not arbitrary because they 

should have advantages for different types of problems. Hence, 

jSO and L-SHADE_cnEpsin are appropriate choices.  
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Table 1 Performance comparison of ESADE with the baselines on 30-D, 50-D and 100-D CEC2017 benchmark set  

over 51 independent runs 
 

30-D 

 
jSO 

L-SHADE_ 

cnEpSin 
ESADE 

 
mean std sig mean std sig mean std 

F1 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 

F3 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 

F4 5.86E+01 3.11E-14 + 4.12E+01 3.49E+00 - 4.96E+01 1.90E+00 

F5 7.55E+00 1.98E+00 = 1.19E+01 1.81E+00 + 7.57E+00 1.45E+00 

F6 2.32E-08 6.21E-08 = 8.27E-09 2.81E-08 = 5.40E-08 1.28E-07 

F7 3.87E+01 1.88E+00 = 4.33E+01 2.68E+00 + 3.85E+01 1.62E+00 

F8 8.09E+00 2.07E+00 = 1.28E+01 2.31E+00 + 7.58E+00 1.46E+00 

F9 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 

F10 1.63E+03 2.80E+02 + 1.45E+03 2.44E+02 = 1.54E+03 1.93E+02 

F11 4.58E+00 1.17E+01 - 1.41E+01 2.01E+01 + 7.72E+00 1.50E+01 

F12 1.47E+02 9.72E+01 + 3.73E+02 2.11E+02 + 1.01E+02 8.54E+01 

F13 1.88E+01 4.34E+00 = 1.63E+01 9.82E+00 - 1.74E+01 5.93E+00 

F14 2.18E+01 1.11E+00 + 2.15E+01 3.74E+00 + 1.96E+01 4.49E+00 

F15 1.32E+00 1.05E+00 - 3.05E+00 1.57E+00 = 2.76E+00 2.06E+00 

F16 5.49E+01 7.20E+01 + 1.91E+01 1.84E+01 = 2.13E+01 2.48E+01 

F17 3.61E+01 7.83E+00 + 2.79E+01 7.46E+00 - 3.35E+01 5.88E+00 

F18 2.09E+01 4.21E-01 + 2.11E+01 7.15E-01 = 2.06E+01 3.40E-01 

F19 4.43E+00 1.54E+00 - 5.48E+00 1.60E+00 = 5.59E+00 1.03E+00 

F20 3.44E+01 5.19E+00 + 3.04E+01 4.90E+00 = 3.20E+01 5.70E+00 

F21 2.08E+02 2.22E+00 = 2.13E+02 2.69E+00 + 2.08E+02 1.60E+00 

F22 1.00E+02 1.44E-14 = 1.00E+02 1.44E-14 = 1.00E+02 1.08E-13 

F23 3.50E+02 2.78E+00 = 3.54E+02 2.91E+00 + 3.50E+02 2.20E+00 

F24 4.26E+02 2.30E+00 = 4.28E+02 2.89E+00 + 4.26E+02 1.65E+00 

F25 3.87E+02 6.29E-03 + 3.87E+02 8.01E-03 = 3.87E+02 3.90E-03 

F26 9.35E+02 3.71E+01 + 9.43E+02 4.45E+01 + 8.87E+02 2.93E+01 

F27 4.97E+02 7.20E+00 = 5.02E+02 5.26E+00 + 4.98E+02 6.43E+00 

F28 3.04E+02 2.13E+01 - 3.19E+02 4.26E+01 = 3.13E+02 3.65E+01 

F29 4.46E+02 1.41E+01 + 4.35E+02 7.48E+00 = 4.36E+02 1.19E+01 

F30 1.97E+03 1.13E+01 = 1.98E+03 4.52E+01 = 1.98E+03 3.25E+01 

W 

T 

L 

11 

14 

4 

11 

15 

3 

 

 

 
50-D 

 
jSO 

L-SHADE_ 

cnEpSin 
ESADE 

 
mean std sig mean std sig mean std 

F1 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 

F3 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 

F4 5.29E+01 4.64E+01 = 4.91E+01 4.28E+01 - 7.56E+01 5.21E+01 

F5 1.49E+01 3.10E+00 + 2.57E+01 6.28E+00 + 1.25E+01 2.06E+00 

F6 1.71E-07 3.18E-07 - 8.72E-07 7.35E-07 = 1.02E-06 1.24E-06 

F7 6.65E+01 2.84E+00 + 7.67E+01 5.87E+00 + 6.42E+01 2.13E+00 

F8 1.46E+01 3.69E+00 = 2.78E+01 6.28E+00 + 1.34E+01 2.24E+00 

F9 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 

F10 3.57E+03 4.52E+02 + 3.11E+03 2.42E+02 = 3.04E+03 3.47E+02 

F11 2.49E+01 3.84E+00 + 2.19E+01 1.75E+00 = 2.16E+01 2.49E+00 

F12 1.79E+03 5.25E+02 + 1.37E+03 4.05E+02 + 8.55E+02 3.13E+02 

F13 3.56E+01 2.66E+01 = 7.24E+01 3.69E+01 + 4.43E+01 2.93E+01 

F14 2.34E+01 1.73E+00 = 2.65E+01 2.04E+00 + 2.35E+01 1.25E+00 

F15 2.23E+01 1.72E+00 + 2.65E+01 3.95E+00 + 2.03E+01 1.80E+00 

F16 3.74E+02 1.56E+02 + 3.05E+02 1.11E+02 = 3.00E+02 1.25E+02 

F17 2.59E+02 9.56E+01 + 2.21E+02 7.46E+01 = 2.09E+02 8.32E+01 

F18 2.41E+01 1.93E+00 + 2.46E+01 2.84E+00 + 2.27E+01 1.15E+00 

F19 1.26E+01 2.97E+00 = 1.73E+01 3.09E+00 + 1.32E+01 1.87E+00 

F20 1.51E+02 7.80E+01 + 1.12E+02 3.13E+01 = 1.21E+02 5.21E+01 

F21 2.15E+02 4.06E+00 = 2.28E+02 6.91E+00 + 2.15E+02 2.35E+00 

F22 1.55E+03 1.91E+03 = 1.33E+03 1.68E+03 - 2.51E+03 1.67E+03 

F23 4.31E+02 5.53E+00 + 4.39E+02 7.30E+00 + 4.27E+02 4.89E+00 

F24 5.07E+02 3.48E+00 = 5.12E+02 5.39E+00 + 5.07E+02 3.27E+00 

F25 4.80E+02 1.62E+00 + 4.80E+02 1.77E+00 - 4.81E+02 2.81E+00 

F26 1.14E+03 5.12E+01 + 1.22E+03 1.04E+02 + 1.09E+03 4.91E+01 

F27 5.11E+02 1.07E+01 - 5.31E+02 1.25E+01 + 5.17E+02 1.27E+01 

F28 4.59E+02 2.10E-13 + 4.58E+02 6.86E+00 - 4.58E+02 1.73E-01 

F29 3.72E+02 1.60E+01 + 3.53E+02 8.58E+00 - 3.59E+02 1.05E+01 

F30 6.08E+05 2.95E+04 = 6.47E+05 5.62E+04 = 6.31E+05 5.25E+04 

W 

T 

L 

15 

12 

2 

14 

10 

5 
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Table 1 (Continued) Performance comparison of ESADE with the baselines on 30-D, 50-D and 100-D CEC2017 benchmark set  

over 51 independent runs 
 

100-D 

 
jSO 

L-SHADE_ 

cnEpSin 
ESADE 

 
mean std sig mean std sig mean std 

F1 7.36E-10 3.70E-09 = 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 

F3 3.72E-06 4.19E-06 + 0.00E+00 0.00E+00 - 2.11E-07 2.35E-07 

F4 1.98E+02 1.08E+01 = 1.99E+02 7.77E+00 - 2.03E+02 1.14E+01 

F5 3.65E+01 8.17E+00 + 5.87E+01 1.34E+01 + 2.57E+01 3.41E+00 

F6 1.63E-04 4.77E-04 + 6.11E-05 2.43E-05 + 1.97E-05 1.20E-05 

F7 1.43E+02 7.38E+00 + 1.62E+02 6.55E+00 + 1.27E+02 3.32E+00 

F8 3.59E+01 8.02E+00 + 5.48E+01 6.72E+00 + 2.64E+01 3.90E+00 

F9 7.02E-03 2.43E-02 + 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 

F10 1.07E+04 8.40E+02 + 1.05E+04 4.94E+02 + 8.97E+03 4.66E+02 

F11 9.13E+01 2.87E+01 + 5.72E+01 3.97E+01 = 4.85E+01 3.20E+01 

F12 1.80E+04 9.69E+03 + 4.53E+03 7.12E+02 - 4.95E+03 8.95E+02 

F13 1.56E+02 4.71E+01 + 1.11E+02 3.56E+01 + 7.13E+01 2.76E+01 

F14 5.38E+01 7.36E+00 + 4.98E+01 7.19E+00 + 3.91E+01 3.77E+00 

F15 1.59E+02 3.98E+01 + 8.89E+01 3.11E+01 = 7.98E+01 3.14E+01 

F16 1.75E+03 3.60E+02 + 1.18E+03 2.58E+02 - 1.45E+03 2.13E+02 

F17 1.32E+03 2.57E+02 + 9.22E+02 1.68E+02 - 1.03E+03 1.95E+02 

F18 1.79E+02 3.51E+01 + 7.28E+01 1.69E+01 + 5.57E+01 1.42E+01 

F19 8.90E+01 1.74E+01 + 5.53E+01 7.47E+00 + 4.79E+01 5.57E+00 

F20 1.55E+03 2.76E+02 + 1.11E+03 1.74E+02 - 1.19E+03 1.38E+02 

F21 2.56E+02 9.67E+00 + 2.77E+02 5.02E+00 + 2.51E+02 4.41E+00 

F22 1.16E+04 7.14E+02 + 1.06E+04 7.36E+02 + 9.78E+03 4.93E+02 

F23 5.67E+02 7.94E+00 + 5.95E+02 9.19E+00 + 5.52E+02 1.09E+01 

F24 8.99E+02 7.05E+00 = 9.17E+02 1.46E+01 + 8.99E+02 5.65E+00 

F25 7.35E+02 3.45E+01 + 6.73E+02 4.11E+01 = 6.64E+02 4.34E+01 

F26 3.21E+03 7.78E+01 + 3.08E+03 1.39E+02 = 3.10E+03 8.69E+01 

F27 5.84E+02 1.83E+01 = 5.87E+02 1.92E+01 + 5.76E+02 2.02E+01 

F28 5.23E+02 2.17E+01 + 5.12E+02 1.90E+01 = 5.13E+02 2.55E+01 

F29 1.24E+03 1.76E+02 = 1.07E+03 1.37E+02 - 1.22E+03 1.56E+02 

F30 2.35E+03 1.39E+02 + 2.39E+03 1.64E+02 + 2.28E+03 1.76E+02 

W 

T 

L 

24 

5 

0 

15 

7 

7 

 

 

Table 2 

Overall performance comparisons of ESADE with jSO and L-

SHADE_cnEpSin according to Holm, Hochberg and Hommel procedures 

v.s.  unadjusted p pHolm pHochberg pHommel 

jSO 0.000069 0.000138 0.000138 0.000138 

L-SHADE 

_cnEpSin 
0.000274 0.000274 0.000274 0.000274 
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Performance comparisons on 30-D, 50-D and 100-D 

functions are shown in Table 1. From Table 1, it is evident from 

our evaluations that the overall performance of the proposed 

ESADE is superior to the other two methods. Specifically, 

ESADE performs significantly better than jSO on 11, 15 and 24 

functions and loses on 4, 2 and 0 functions in the cases of 30-D, 

50-D and 100-D respectively. Compared with L-

SHADE_cnEpSin, ESADE outperforms on 11, 14, 15 and 

underperforms on 3, 5 and 7 functions respectively. Notably, 

the performance superiority of ESADE becomes more 

prominent as dimensionality D increases.  For instance, ESADE 

exhibits remarkable superiority in more than half of the tested 

functions in the 100-D case. These results demonstrate that 

ESADE is capable of effectively handling complex 

optimization problems, thereby showcasing the robustness and 

suitability for a wide range of applications. 

    Except the above single problem comparison, multi-problem 

statistical tests have also been performed, as shown in Table 2. 

According to the Holm, Hochberg and Hommel procedures, 

ESADE is significantly better than the other two algorithms 

with the outcome p values smaller than 0.05. 

Fig. 1 shows the convergence curves on nine selected 

functions. As seen, ESADE achieves the best final solutions on 

eight functions, including 30-D F26, 50-D F5, 50-D F12, 50-D 

F18, 100-D F8, 100-D F13, 100-D F21, 100-D F23 and 

competitive performance on one function, i.e., 30-D F7 when 

compared with jSO. 

 

4.2 Comparison with state-of-the-art DE variants 

   To demonstrate the performance of ESADE, it is further 

compared with the following five state-of-the-art DE variants: 

PaDE [41]: An improved L-SHADE algorithm with a novel 

parameter adaptation method. 

SCSS-L-SHADE [22]: A similarity selection-based 

improved L-SHADE. 

EaDE [32]: An adaptive DE algorithm based on an explicit 

adaptation mechanism. 

 
 

 
 

 
Fig. 1 Convergence curves of ESADE and the baselines on the nine selected functions in the run with the median error value.  
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L-SHADE-RSP [42]: An improved jSO algorithm with a 

selective pressure strategy.  

EJADE [35]: A state-of-the-art improved JADE algorithm 

with a dual trial vector mechanism.  

DISH [14]: An enhanced jSO algorithm with distance-based 

parameter adaptation.  

SCSS-jSO [22]: An advanced jSO algorithm with a similarity 

selection mechanism.  

 
 

DTDE [43]: A state-of-the-art DE variant based on domain 

transform.  

To ensure a fair comparison, parameters recommended in the 

corresponding literature are adopted as they have originally 

been tuned for the same CEC2017 functions. Performance 
comparisons on 30-D, 50-D and 100-D functions are shown in 

Table S1 in the supplementary file. Based on the results 

summarized in Table 3, it can be observed that ESADE 

demonstrates favorable performance across most scenarios 

compared to other variants. The only exceptions are in 30-D, 

where it is outperformed by EaDE, SCSS-jSO and DTDE, and 

in 50-D, where it is inferior to DTDE. However, in the 

remaining cases, ESADE consistently showcases superior 

performance. Notably, when D increases to 100, ESADE 

exhibits significant advancement over PaDE, SCSS-L-SHADE, 

EaDE, L-SHADE-RSP, EJADE, DISH, SCSS-jSO and DTDE 

on 24, 23, 21, 17, 27, 19, 16 and 15 functions respectively. This 

implies that ESADE performs uniquely well when dealing with 

complex problems in high-dimensional spaces, and it might be 

explained by the capability of ESA to capture the successful 

evolutionary scale in high-dimensional problems for better 

adjusting the exploitation and exploration directions. 

According to the p-values given by the multi-problem test in 

Table 4, it is evident that ESADE statistically outperforms 

PaDE, SCSS-L-SHADE, EaDE, EJADE and DISH as the p-

values are below 0.05 for all cases. Compared with L-SHADE-

RSP, the unadjusted p value is below 0.05 but it is not 

significant according to the Holm, Hochberg and Hommel 

procedures. In comparison to SCSS-jSO and DTDE, the 

superiority is not significant. Note that when compared with 

DTDE, the p-values are obtained using DTDE as the control 

algorithm. Overall, it can be inferred that ESADE performs 

significantly better than most of the compared DE variants. The 

performance ranking given by Friedman test is shown in Table 

5, from which ESADE achieves the ranking of 3.72, which is 

competitive to DTDE and much higher than the rest DEs. 

Table 3 
Comparison results with state-of-the-art DEs according to single problem 

Wilcoxon’s test 

v.s. 
30-D 50-D 100-D 

win tie lose win tie lose win tie lose 

PaDE 12 11 6 17 8 4 24 2 3 

SCSS-L-
SHADE 

8 17 4 11 13 5 23 5 1 

EaDE 8 11 10 11 13 5 21 8 0 

L-SHADE 

-RSP 
9 14 6 10 13 6 17 12 0 

EJADE 17 7 5 22 5 2 27 1 1 

DISH 12 14 3 13 12 4 19 6 4 

SCSS-jSO 6 16 7 7 15 7 16 11 2 

DTDE 8 9 12 9 5 15 15 3 11 

 
Table 4 

Overall performance comparisons of ESADE with state-of-the-art DEs 
according to Holm, Hochberg and Hommel procedures 

v.s.  unadjusted p pHolm pHochberg pHommel 

PaDE <1e-8 <1e-8 <1e-8 <1e-8 

SCSS-L-SHADE 0.000095 0.00057 0.00057 0.00057 

EaDE 0.004169 0.01167 0.01167 0.01167 

L-SHADE-RSP 0.044757 0.134271 0.134271 0.134271 

EJADE <1e-8 <1e-8 <1e-8 <1e-8 

DISH 0.002922 0.014611 0.014611 0.011689 

SCSS-jSO 0.579828 1.159655 0.944827 0.944827 

DTDE 0.944827 1.159655 0.944827 0.944827 

 
Table 5 

Overall performance ranking of the considered DEs 

Algorithm Ranking 

PaDE 6.08 

SCSS-L-SHADE 5.35 

EaDE 4.91  

L-SHADE-RSP 4.56 

EJADE 7.67 

DISH 4.96 

SCSS-jSO 3.95 

DTDE 3.75 

ESADE 3.72 

 

Table 6 
U-score and U-rank achieved by the DEs 

 30-D 50-D 100-D 

Algorithm 
U- 

Score 

U-

Rank 

U-

Score 

U-

Rank 

U-

Score 

U-

Rank 

jSO 349702 10 384301 9 339521 9 

L-SHADE 
_cnEpSin 

407812 6 397470 8 453775 5 

PaDE 396981 8 338322 10 260048 10 

SCSS-L-

SHADE 
405813 7 407668 6 345990 8 

EaDE 454086 4 424471 5 383472 7 

L-SHADE 

-RSP 
408174 5 451270 4 457422 4 

EJADE 329764 11 209727 11 206853 11 

DISH 351611 9 401501 7 448084 6 

SCSS-jSO 460624 3 474042 3 515557 3 

DTDE 526588 1 556489 1 540905 2 

ESADE 465848 2 511742 2 605376 1 
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Apart from the above statistical analyses, the trial-based 

dominance approach proposed by Price et al. [44] that could 

measure both the speed and accuracy of stochastic optimizers is 

also considered for performance comparison of the DEs. The 

target error value EVmin for the approach is set to 1E−8 in this 

experiment. The U-score [44] and its ranking U-rank achieved 

in the 30-D, 50-D, 100-D are shown in Table 6. From Table 6, 

ESADE obtains the 1st rank in the 100-D case, the 2nd rank in 

the 30-D and 50-D cases, while DTDE obtains the 1st rank in 

the 30-D and 50-D cases.  

 

4.3 Comparison with state-of-the-art multi-strategy 

methods 

To address the inefficiency of solving different problems at 

different stages with a single fixed strategy, scholars have 

proposed several multi-strategy methods. The following six 

methods are considered for comparison with ESA.  

    Sa [15]: A memory-based strategy adaptation method from 

the SaDE algorithm. 

    EPS [23]: A success-based strategy adaptation method from 

the EPSDE algorithm. 

    SaM [17]: An index-based strategy adaptation by the 

parameter adaptation of the JADE algorithm. 

    CSM [21]: A multi-strategy method that selects offspring 

based on a cheap surrogate model. 

    UM [33]: A multi-strategy method that selects offspring 

based on an underestimation model.  

    SCSS [22]: A multi-strategy method that selects offspring 

based on a fitness-based similarity selection rule. 

To facilitate direct performance comparisons, all the methods 

are respectively implemented on the two baselines, i.e., jSO and 

L-SHADE_cnEpSin. Among all the methods, EPS, SaM, CSM 

and SCSS are parameter-free and therefore, there are no 

parameters to tune for the CEC2017 functions. UM has been 

tuned for the CEC2017 functions in [33]. While for Sa, the 

learning period LP is set as {10, 30, 50, 70, 90} respectively 

and the one (LP = 50) with the best overall performance given 

by Friedman test is adopted.  

From Table S2 in the supplementary file and Table 7, in the 

30-D, ESA performs similarly to Sa, EPS and SaM, 

outperforms CSM and UM but underperforms SCSS. While in 

the 50-D and 100-D cases, ESA is consistently the best methods. 

For instance, in the 100-D case, ESA outperforms on 16, 18, 15, 

20, 23, 14 functions and loses on 4, 4, 6, 6, 0, 4 functions 

respectively. These findings indicate that when dealing with 

large search space, the ESA mechanism allows for appropriate 

strategy matching to adjust the search range and improve the 

optimization efficiency. 

Furthermore, Table 8 reports the achieved p-values 

according to the Holm, Hochberg and Hommel procedures. It 

can be concluded that ESA demonstrates its significant 

superiority over five methods including Sa, EPS, SaM, CSM 

and UM with p value smaller than 0.05 except for SCSS. The 

overall performance ranking of all methods is shown in Table 

9, from which ESA is the first-ranked.  

 

 
 

 

 
 
 
4.4 Working mechanism of ESA 

   To investigate the working process of ESA, the preference of 

a small or large evolutionary scale which is determined by the  

 value, is first analyzed. Following, the standard ESADE is 

compared with several of its variants to demonstrate the 

reasonability of the component designs from the perspective of 

performance.  

 

(1) Preference of small or large evolutionary scale 

Fig. 2 plots the selection of a small or large evolutionary scale 

over the evolution process in ESADE on four 50-D functions 

F5, F13, F15 and F23, from which it is observed that: 

1) For all four functions, a large evolutionary scale is more 

favored at the early stage.   

Table 7 
Comparison results of ESA with other multi-strategy methods according to 

single problem Wilcoxon’s test 

v.s. 
30-D 50-D 100-D 

win tie lose win tie lose win tie lose 

Sa 6 17 6 12 11 6 16 9 4 

EPS 4 21 4 13 11 5 18 7 4 

SaM 7 14 8 12 10 7 15 8 6 

CSM 19 6 4 17 7 5 20 3 6 

UM 16 11 2 18 9 2 23 6 0 

SCSS 4 17 8 11 14 4 14 11 4 

 

Table 8 

Overall performance comparisons of ESA with multi-strategy methods 

according to Holm, Hochberg and Hommel procedures 

v.s.  unadjusted p pHolm pHochberg pHommel 

Sa 0.003789 0.011368 0.011368 0.011368 

EPS 0.000584 0.002334 0.002334 0.002334 

SaM 0.007651 0.015303 0.015303 0.015303 

CSM <1e-8 <1e-8 <1e-8 <1e-8 

UM <1e-8 0.000001 0.000001 0.000001 

SCSS 0.50492 0.50492 0.50492 0.50492 

 
Table 9 

Overall performance ranking of the considered methods 

Method Ranking 

Sa 3.94 

EPS 4.12 

SaM 3.87 

CSM 5.14 

UM 4.68 

SCSS 3.21 

ESA 3 
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2) On F5 and F23, a large evolutionary scale is adopted at 

the early stage, while at the latter stage which occupies 

most of the function evaluations, a small scale is 

consistently employed. 

3) On F13 and F15, in the middle of the evolution process, a 

small scale is consecutively used. While at the late stage, 

small and large scales are non-dominated by each other, 

and are competitive.  

In summary, ESA could dynamically adjust the evolutionary 

scale according to different evolutionary stages and different 

problems.  

 

(2) Comparison with the variants 

   To verify the effectiveness of the components of ESA, three 

variants are constructed as follows: 

Variant-reverse: It reverses the decision on a small or large 

evolutionary scale. Specifically, when  < T, a large 

evolutionary scale is adopted. Otherwise, a small evolutionary 

scale is used.  

Variant-random: It randomly decides the employment of a 

small or large evolutionary scale. 

Variant-Amean: Instead of using the Lehmer mean, it uses 

the arithmetic mean to calculate the  of Eq. (10). 

Other settings are unaltered for a fair comparison. 

Comparisons with the standard ESADE are shown in Table S3 

and the results are summarized in Table 10.  ESADE performs 

much better than the variants. Specifically, the effectiveness of 

ESA is confirmed by comparison with Variant-reverse and 

Variant-random with the “win/lose” metric of “23/2” and “14/4” 

respectively. The superiority is much more significant when 

compared with Variant-reverse because the behavior of 

Variant-reverse is exactly opposite to ESA. Compared with 

Variant-Amean, the Lehmer mean in ESA could generate a 

larger  , which is beneficial to maintaining population 

diversity for solving the complicated multi-modal functions. 

 

 
4.5 Application in real-world problems  

           
 

                 
 

Fig. 2 Plots of the selection of a small or large evolutionary scale over the evolution process in the run with the median error 

value.   
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Table 10 

Comparison results of ESADE with the variants according to  
single problem Wilcoxon’s test 

 win tie lose 

Variant- reverse  23 4 2 

Variant- random  14 11 4 

Variant- Amean  19 9 1 
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To assess the performance of ESA on real-world 

optimization, it is applied to eight representative problems from 

the CEC2011 test suite [45], namely the Parameter Estimation 

for Frequency Modulated (FM) Sound Waves (P1), the 

Lennard-Jones Potential Problem (P2), the Tersoff Potential for 

model Si (B) Problem (P3), the Tersoff Potential for model Si 

(C) (P4), the Circular Antenna Array Design Problem (P5), the 

DED instance 1 (P6), the ELD instance 4 (P7) and the 

Hydrothermal Scheduling Instance 1 (P8).  

The effectiveness of ESA could be clearly observed from 

Table 11. Compared with jSO, ESADE advances the 

performance on P2, P4−P8 but loses on P3. Compared with L-

SHADE_cnEpSin, ESADE outperforms on five problems, 

including P1−P4 and P7 but loses on P6 and P8. Overall, 

ESADE achieves the best performance on five problems while 

jSO and L-SHADE_cnEpSin show advantages on one (P3) and 

two (P6, P8) problems respectively.  

Further, Tables S4 and 12 show the comparisons with other 

multi-strategy methods. As seen, ESA exhibits superior 

performance over Sa, EPS, SaM, CSM, UM and SCSS on 5, 5, 

5, 5, 5, 4 problems and inferior performance on 0, 0, 0, 1, 0, 2 

problems respectively, which is the best-performing among all 

the considered methods.  

 
4.6 More investigations on ESA  

   (1) Parameter sensitivity 

   To investigate the performance sensitivity to T, another eight 

settings are examined, which range within [0.1, 0.9] with a step 

of 0.1. From the comparison results as shown in Table 13, the 

standard setting of 0.5 performs significantly better than the 

eight settings. The superiority is much more significant 

compared with a small or large T value. Since a small and a 

large T would be a large and small evolutionary scale-favored 

setting respectively, the results indicate that a median T could 

better balance the local exploitation and exploration capabilities. 

Besides T, performance sensitivity to the setting of a in Eq. (12) 

and the initial  value is also studied, as shown in Tables 14 

and 15 respectively. From Table 14, the performance degrades 

as a increases. A large a value will result in a lack of sufficient 

historical information to update  . From Table 15, the initial 

 value does not have a significant impact on the performance 

as all the settings perform similarly on almost all the functions. 

The result indicates that the initial  has a little influence on 

the adaptation.  

 

 

 
 
   (2) Performance on low-level adaptation 

Table 11 

Effectiveness of ESA on the real-world problems  

 jSO L-SHADE_cnEpSin ESADE 

 mean std sig mean std sig mean std 

Parameter Estimation for  
Frequency Modulated (FM) Sound Waves  

2.32E+00 4.50E+00 = 2.67E+00 4.63E+00 + 5.98E-01 2.42E+00 

Lennard-Jones Potential Problem -2.75E+01 5.63E-01 + -2.75E+01 4.90E-01 + -2.79E+01 4.22E-01 

Tersoff Potential for model Si (B) -3.68E+01 2.67E-01 − -3.68E+01 2.42E-01 + -3.68E+01 2.57E-01 

Tersoff Potential for model Si (C) -2.92E+01 4.37E-04 + -2.92E+01 3.01E-04 + -2.92E+01 6.11E-05 

Circular Antenna Array Design Problem -2.16E+01 7.34E-02 + -2.16E+01 8.53E-02 = -2.17E+01 8.94E-02 

ELD Problems: DED instance 1 4.76E+04 2.82E+02 + 4.54E+04 3.03E+02 − 4.61E+04 3.75E+02 

ELD Instance 4 1.23E+05 3.60E+02 + 1.23E+05 4.36E+02 + 1.22E+05 3.03E+02 

Hydrothermal Scheduling Instance 1 9.26E+05 6.16E+02 + 9.24E+05 4.14E+02 − 9.25E+05 5.41E+02 

+ 

= 

− 

6 

1 
1 

5 

1 
2 

 

 
 Table 12 

Performance comparison of ESA with other multi-strategy methods on 

the real-word problems 

 Sa EPS SaM CSM UM SCSS 

+ 

= 

− 

5 

3 
0 

5 

3 
0 

5 

3 
0 

5 

2 
1 

5 

3 
0 

4 

2 
2 

 

Table 13 

Performance comparison of T = 0.5 with other settings on 50-D functions 

 0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 

+ 

= 

− 

19 

9 

1 

20 

8 

1 

14 

13 

2 

7 

19 

3 

8 

18 

3 

20 

7 

2 

20 

7 

2 

20 

7 

2 

 
Table 14 

Performance comparison of a = 0.1 with other settings on 50-D functions 

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

+ 

= 

− 

1 

27 

1 

2 

25 

2 

3 

26 

0 

3 

26 

0 

4 

25 

0 

6 

22 

1 

8 

20 

1 

7 

22 

0 

 
Table 15 

Performance comparison of initial   = 0.5 with other settings on 50-D 

functions 

 0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 

+ 

= 

− 

0 

29 

0 

0 

29 

0 

0 

29 

0 

1 

27 

1 

1 

27 

1 

0 

29 

0 

1 

27 

1 

0 

29 

0 
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    The previous experiments show the effectiveness of ESA for 

high-level adaptation, i.e., it is integrated with two DE variants. 

To study its performance for low-level adaptation of mutation 

strategies, ESA is implemented with “DE/rand/1” and 

“DE/current-to-pbest/1”. The parameter adaptation of F and CR 

is from SHADE [12] and the population size NP is set to 100. 

Thus, the three algorithms are denoted as “SHADE-rand/1”, 

“SHADE-current-to-pbest/1” and ESA-SHADE, respectively. 

As shown in Tables S5 and 16, ESA-SHADE performs 

significantly better than the other two algorithms with a single 

mutation strategy. The total “win/lose” results in 30-D, 50-D 

and 100-D cases are “30/3”, “41/2”, “42/6” respectively, which 

confirms the effectiveness of ESA for low-level adaptation.  

 

5 Conclusion 

In this paper, we have proposed an evolutionary scale 

adaptive DE, named ESADE for global optimization. With the 

idea that the recently successful evolutionary scale information 

could be further utilized to guide the evolution, ESA first 

measures the overall successful evolutionary scale of the 

population by a normalized ranking mechanism. An appropriate 

evolutionary scale factor is obtained and further used to update 

an evolutionary scale indicator. The evolutionary scale 

indicator is then compared with a threshold to determine the 

employment of a small or large evolutionary scale, i.e., to select 

a close or a far trial vector.  

The effectiveness of the proposed ESA method has been 

confirmed by incorporating with state-of-the-art DEs. The 

resultant ESADE performs statistically better than each of the 

baseline DEs and several state-of-the-art DEs on the CEC2017 

benchmark problems. The contribution of ESA has also been 

illustrated by comparisons with six other multi-strategy 

adaptation methods. Further comparison on real-world 

problems has also demonstrated the advantage of the proposed 

ESA method.  

    As for future works, ESA would be extended to other state-

of-the-art baselines. Besides, its compatibility with other types 

of optimizations, such as multimodal [46], multiobjective [47] 

and multi-task [48] optimizations also needs to be studied.  
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