

Journal Pre-proof

Differential evolution with evolutionary scale adaptation

Sheng Xin Zhang , Xin Rou Hu , Shao Yong Zheng

PII: S2210-6502(24)00014-2
DOI: https://doi.org/10.1016/j.swevo.2024.101481
Reference: SWEVO 101481

To appear in: Swarm and Evolutionary Computation

Received date: 9 September 2023
Revised date: 13 January 2024
Accepted date: 15 January 2024

Please cite this article as: Sheng Xin Zhang , Xin Rou Hu , Shao Yong Zheng , Differential evo-
lution with evolutionary scale adaptation, Swarm and Evolutionary Computation (2024), doi:
https://doi.org/10.1016/j.swevo.2024.101481

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2024 Published by Elsevier B.V.

https://doi.org/10.1016/j.swevo.2024.101481
https://doi.org/10.1016/j.swevo.2024.101481

1

1. Introduction

 Differential evolution (DE) proposed by Storn and Price [1]

has become one of the most efficient evolutionary algorithms

for solving continuous global optimization problems

[2][3][4][5][6]. With its simplicity, straightforward

implementation, and impressive computational efficiency, DE

has garnered widespread utilization across a multitude of

practical domains [2][3] from engineering and finance to data

science and artificial intelligence. Inspired by biological

evolution, DE predominantly comprises three genetic

operations: mutation, crossover, and selection, which are based

on a random population. Mutation first perturbs a base vector

with one or more differential vectors to generate a mutant vector,

introducing new genetic materials. Crossover then forces gene

exchanges between the mutant vector and the current vector to

generate a trial vector, which controls the percentage of the

utilization of the current information from the current vector

and the new information from the mutant vector. Selection

finally determines the fitter one between the trial vector and the

current vector for the next generation. Among them, mutation

and crossover determine the generation of the trial vector from

the current vector and significantly influence the performance.

In the past two decades, DE has been enhanced by

developing new mutation [7][8][9] and crossover [10][11]

operations and better adjusting the control parameters [9]

[12][13][14] including mutation factor, crossover rate and

population size. Initially, extensive efforts were dedicated to

fine-tuning the control parameter configurations to achieve

more desirable results. However, researchers soon realized that

a fixed parameter setting could not yield optimal solutions for

all types of problems [9]. Moreover, the exhaustive trial-and-

error process required to determine the best configuration was

time-consuming and laborious. To overcome these limitations,

various adaptive parameter methods have been developed [12].

These methods offer a flexible and runtime-dependent approach

to parameter tuning. Instead of relying on a predetermined set

of values, they enable an algorithm to dynamically adjust its

own parameters based on the evolution of the population.

As optimization problems become increasingly diverse and

with the emergence of challenges like multimodal problems, it

has become evident that focusing solely on adapting control

parameters is insufficient. In response, researchers have also

paid attention to improving the efficiency of the operators [7].

The mutation and crossover operators play crucial roles in

exploring and exploiting the search space to navigate towards

optimal solutions. Various operators [8][9][10][11] have been

proposed to enhance exploration and exploitation capabilities.

Moreover, when dealing with complex optimization problems,

particularly those with varying characteristics at different stages,

an algorithm needs to meet diverse requirements. In the face of

these challenges, it is crucial to have the flexibility to adapt

search strategies. For example, in the initial exploration phase,

when the search space is vast and relatively unexplored, an

algorithm may prioritize global exploration to identify potential

promising regions. Conversely, in the later stages, when

localized regions of interest are identified or when convergence

Sheng Xin Zhang a, Xin Rou Hu a, Shao Yong Zheng b

a College of Information Science and Technology, Jinan University, Guangzhou, China
b School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China

Corresponding author: Sheng Xin Zhang (zhangsx@jnu.edu.cn) and

Shao Yong Zheng (zhengshaoy@mail.sysu.edu.cn)

Differential evolution with evolutionary scale

adaptation

Abstract —The performance of differential evolution (DE) algorithm heavily depends on the evolutionary scale, which is

controlled by the generation operations including mutation, crossover and the control parameters including mutation factor and

crossover rate. Adjusting the evolutionary scale to suit different types of problems is a critical yet challenging open question in

DE research. To efficiently address this issue, this paper proposes a novel DE based on evolutionary scale adaptation, termed

as ESADE. First, a successful scale estimation mechanism is proposed to measure the appropriate evolutionary scale by utilizing

the successful evolutionary feedback from the solution space provided by the trial vectors and the target vectors. With the

appropriate evolutionary scale, an evolutionary scale adaptation mechanism pre-selects the closest or the farthest trial vector

from each target vector, which corresponds to a small or large evolutionary scale respectively to match the search requirements

of different evolutionary stages. The effectiveness of the ESA method is demonstrated by performance comparisons with each

single baseline strategy, state-of-the-art DEs and state-of-the-art multi-strategy methods on 29 benchmark functions with three

dimensionalities. Further applications on several real-world optimization problems also reveal the competitive performance of

ESADE.

Keywords —Evolutionary scale adaptation, multi-strategy, mutation, differential evolution, global optimization

2

towards the optimal solution is desired, an algorithm might shift

towards a more exploitative strategy focusing on intensifying

the search within these regions. Additionally, certain problems

may require a fine balance between exploration and

exploitation throughout the entire optimization process to avoid

getting stuck in local optima which may result in poor solutions.

Evolutionary experiments in DE generate trial vectors that

not only propagate better individuals to the next generation but

also provide valuable information for further adjusting search

strategies to enhance efficiency. In general, we summarize the

existing strategy adaptation mechanisms into three categories.

The first category is based on strategy competition and the

derived successful experiences [15][16][17]. Various

competition mechanisms have been developed, such as

memory-based [15], multi-population ensemble-based [16] and

adaptive parameter control method-based [17] ones. The basic

idea is that a strategy that generates successful trial vectors (i.e.,

offspring) is promising and should gain more opportunities for

further generating offspring. The second category involves

adaptation methods based on the observation of certain

characteristics, such as fitness values [18] or population states

[19]. With the observation, convergence and diversity

requirements are identified, and strategies could be assigned

accordingly. The third category adapts strategies based on pre-

selection rule. Multiple candidates are generated by multiple

strategies first, and then one of the candidates is filtered as the

trial vector by rules such as fitness evaluation [20], surrogate

model [21] and similarity selection rule [22].

Although significant advances have been achieved by these

works, the search feedback particularly the evolutionary scale

in the solution space which could be utilized for performance

improvement has not been fully utilized to adjust the search

strategy. This motivates the proposal of the evolutionary scale

adaptation (ESA) in this paper. In ESA, the successful

evolutionary scale between the target vectors and trial vectors

is first measured, which is normalized as an evolutionary scale

indicator. A large and a small indicator value means that a large

and a small evolutionary scale tends to be more promising

respectively and will then be considered in the offspring

generation. Experimental results demonstrate the effectiveness

of ESA for strategy adaptation and its superior performance

over several classic and state-of-the-art strategy adaptation

methods.

The rest of this paper is organized as follows. Section 2

briefly describes the basic procedures of DE, along with a

review of multi-strategy adaptation methods. The details of the

proposed approach are described in Section 3. In Section 4, we

compare and analyze the experimental results on benchmark

functions and real-world problems to assess the performance

and effectiveness. Finally, Section 5 is devoted to conclusions.

2. Background

2.1 Differential evolution

At the beginning, DE initializes a population according to Eq.

(1):

(), ,0 , (0,1) , 1, 2 ...,i j j i j j jx x rand x x i NP= +  − = ， (1)

where xi,j,0 represents the j-th dimension of the i-th individual

at the initial generation, jx and jx are the lower and upper

bounds of the j-th dimension respectively and randi,j(0,1) is a

uniformly distributed random number within [0, 1]. There are

NP individuals, and each individual is a D-dimensional vector.

Mutation: Mutation is performed to generate a mutant vector

Vi,g by multiplying a scaling factor F with one or more

differential vectors, which is then added to a base vector.

Several common mutation strategies are as follows:

“DE/rand/1”:

()
1 2 3, , , ,i g r g r g r gF= +  −V X X X (2)

“DE/best/1”:

()
1 2, , , ,i g best g r g r gF= +  −V X X X

(3)

“DE/current-to-pbest/1”:

() ()
1 2, , , , , ,i g i g pbest g i g r g r gF F= +  − +  −V X X X X X (4)

where r1, r2, r3 and i are mutually different random integers

from the range of [1, NP]. ,best gX and ,pbest gX are the fittest and

one of the top 100p% fittest solutions from the current

population. “DE/rand/1” is based on a random search variation,

“DE/best/1” focuses on searching around the best solution

while “DE/current-to-pbest/1” guides the target solution

towards ,pbest gX .

Crossover: Following mutation, a trial vector Ui, g is

generated by exchanging the dimensions between the mutant

vector Vi, g and the target (current) vector Xi, g with a crossover

operation. The classic binomial crossover is as follows:

, , ,

, ,

, ,

if (0,1) or

otherwise

i j g i j rand

i j g

i j g

v rand CR j j
u

x

 =
= 


 (5)

where the crossover rate CR determines the probability of

replacing the dimensions of the target vector with the

corresponding dimensions of the mutant vector. The presence

of the random index jrand which is a random integer from [1, D]

ensures that at least one dimension of Ui, g comes from Vi, g.

Selection: After crossover, the fitness f(Ui, g) of each trial

vector is evaluated. During the selection, f(Ui, g) is compared

with the fitness f(Xi, g) of the target vector. The better one will

be retained as a target vector for the next generation. The

selection operation for a minimization problem is as follows:

() ()

() ()
, , ,

, 1

, , ,

if

if

i g i g i g

i g

i g i g i g

f f

f f
+

 
= 



U U X
X

X U X
 (6)

2.2 Multi-strategy adaptation

Different types of strategy adaptation methods have been

proposed for DE to adjust the search behavior at different

evolutionary stages to better fit the optimization, some of which

are summarized as follows:

(1) Multi-strategy method based on competition

3

This type of method adjusts strategies based on the success

experience of strategies involved in the competition of

generating successful offspring. In strategy adaptive DE

(SaDE) [15], four different strategies are selected to form a

candidate pool, and a suitable mutation strategy is chosen based

on the success rate obtained from a learning period. In ensemble

of parameter and strategy DE (EPSDE) [23] , there are

parameter and strategy candidate pools respectively, which are

randomly configured together, and if successful, they are

retained. In multi-population ensemble DE (MPEDE) [16], the

population is divided into sub-populations, with each sub-

population applying different mutation strategies, and the

strategy with the most fitness improvements is assigned to a

reward sub-population. In strategy adaptation mechanism (SaM)

[17], each strategy is assigned an index, and the strategy

adaptation is treated as a parameter adaptation problem. In

multiple variants coordination (MVC-DE) [24], different DE

variants are adaptively utilized in different evolutionary

segments. In chaotic local search-based DE (CLSDE) [25],

different kinds of chaotic local search are adaptively employed

in the evolutionary process.

(2) Multi-strategy method based on observation

This type of method allocates strategies based on the

information derived from the population, such as the fitness and

the evolutionary status of the population. Fitness ranking has

been successfully applied for developing new mechanisms. In

[18], Tang et al. proposed an individual-dependent DE (IDE),

which includes an individual-dependent parameter mechanism

for setting control parameters and an individual-dependent

mutation strategy mechanism for adjusting mutation strategies.

In [26], Cui et al. presented a self-adaptive DE where the

population is divided into sub-populations based on fitness, and

each sub-population owns a specific mutation strategy. In [27],

Mohamed et al. introduced two novel mutation strategies, and

the selection of the vectors in the mutation strategies is based

on fitness ranking. In historical and heuristic-based DE (HHDE)

[28], the assignment of mutation strategy for each solution

depends on both successful experience and fitness ranking. In

multi-layer competitive-cooperative DE (MLCCDE) [29],

strategies and computing resources are allocated according to

the fitness ranking. In objective and dimension feedback DE

(ODFDE) [30], search information collected from the objective

and dimension spaces is utilized to assign strategies at the

dimensional level. Besides fitness, population information has

also been utilized for adjusting search strategies. In

neighborhood-based DE (NDE) [31], strategies are employed

according to the neighborhood information of each current

solution. In explicit adaptive DE (EaDE) [32], the comparison

of fitness improvements between superior and inferior

individuals serves as an indicator for strategy adaptation.

(3) Multi-strategy method based on pre-selection rule

This type of method generates multiple trial vectors by

utilizing multiple strategies, and one of them is selected as the

final trial vector using pre-selection rules. In composite DE

(CoDE) [20], three trial vectors are randomly generated by

combining strategies and parameters from candidate pools, and

the best one in terms of fitness is selected and compared with

the target vector to update the population. In cheap surrogate

model-based DE (CSM-DE) [21], multiple trial vectors are

evaluated using a cheap surrogate model, and one of them is

selected as the final trial vector. In underestimation-based

multi-mutation DE (UM-DE) [33], offspring selection relies on

the underestimation model. In selective-candidate framework

with a similarity selection rule-based DE (SCSS-DE) [22], the

selection of the final trial vectors is based on the fitness ranking

and the Euclidean distance between target vectors and trial

vectors. In global-local cooperate DE (GLCDE) [34], trial

vectors are generated using different types of strategies and

evaluated with an improved underestimation model. In

ensembling populations-based JADE (EJADE) [35], two sets of

mutation and crossover operators are employed to generate

offspring, and the fitter one is filtered as the final trial vector.

3 Proposed method

The proposed ESADE consists of two mechanisms: the

successful scale estimation (SSE) mechanism and the

evolutionary scale adaptation (ESA) mechanism.

3.1 Successful scale estimation

The successful scale estimation (SSE) mechanism measures

the successful scale of the evolutionary process by evaluating

how far the successful trial vectors deviate from their target

vectors. Specifically, it calculates the Euclidean distance

between the trial vector and its corresponding target vector at

each generation as follows:

, , , || ||, 1, 2,...,i g i g i gd i NP= − =U X (7)

Then, the NP distance values are sorted in ascending order

and assigned a ranking index γi, where γi = 1 and γi = NP

represent the smallest and largest distances respectively.

Following, γi is normalized to ensure that it falls within a

specific range, typically between 0 and 1 by Eq. (8):

= i

i
NP


 (8)

Subsequently, if the fitness value of a trial vector is better

than that of its corresponding target vector, the normalized rank

index γ of the successful trial vector is saved to the set M, as

follows:

() (), ,if

end

i g i g

i

f f

M



→

U X

(9)

By saving the γ values of successful trial vectors, SSE can

capture the information about the appropriate evolutionary

scale for generating improved solutions. Finally, the weighted

Lehmer mean  of M is calculated as follows:

 2

1

1

=

M

m mm

M

m mm

w M

w M
 =

=









 (10)

4

1

= m
m M

mm

f
w

f
=





(11)

where Mm is the m-th element of M,
, ,() ()m mk g mk gf f f = −U X

and mk is the index of the current solution corresponding to m.

mw is used to emphasize the contributions of large fitness

improvements.  named appropriate evolutionary scale factor,

provides a quantitative measure of the suitability and potential

of different evolutionary scales for different optimization

problems or even different evolutionary stages. In some

problems or at certain evolutionary stages, a smaller

evolutionary scale tends to be successful. In this case, the

successful γ values are relatively small, and thus the  is

relatively small. In the other case, a larger evolutionary scale is

more promising for generating successful solutions and thus the

 is relatively large. Therefore,  measures whether a large or

small scale is appropriate. With the above procedures, the

pseudo-code of SSE is shown in Algorithm 1.

Algorithm 1: SSE

Input: Xg: current population at generation g;

Ug : trial population at generation g;

NP: population size;

M = : M is initialized as empty.

Output:  : appropriate evolutionary scale factor.

1: For i = 1 : NP

2: Calculate the distance di by Eq. (7);

3: End For

4: Sort d in ascending order and obtain the normalized ranking

γ by Eq. (8);

5: For i = 1 : NP

6: If f(Ui, g) ≤ f(Xi, g)

7:
i M → ;

8: End If

9: End For

10: Calculate the appropriate evolutionary scale factor  by

Eq. (10).

3. 2 Evolutionary scale adaptation

 In DE, a generation strategy refers to how the trial vectors are

generated, introducing new genetic materials to explore the

searching space. However, if the strategy is too random or too

greedy, it would lead to a loss of directionality or suboptimal

solutions. To address this issue, the proposed evolutionary scale

adaptation (ESA) mechanism dynamically adjusts the

greediness of the optimization based on the current search

requirement. An evolutionary scale indicator  is introduced to

measure the degree of successful evolution in the solution space.

 is initialized at the beginning and updated at each generation

by utilizing the appropriate evolutionary scale factor 

according to Eq. (12), where a = 0.1 is a constant.

 (1)a a  = −  +  (12)

 If  is smaller than a preset threshold T, it indicates that the

recently successful individuals have small γ and a small

evolutionary scale is more favorable. In this case, for generating

offspring, a closer one from each current solution would be

more promising to narrow down the search range. Otherwise, if

 ≥ T, a farther one from each current solution is more

preferred to expand the search range.

With the above considerations, the pseudo-code of ESA is

shown in Algorithm 2. Lines 1−3 calculate the distance

between each current solution and each of the corresponding

generated trial solutions by K candidate strategies. The

generation strategy herein is a generalized concept of the

procedure of producing trial vectors from target vectors, which

could be the low-level ones, such as the mutation and crossover

strategy, or the high-level ones, such as different DE variants.

Line 4 compares  with T to determine the choice of a small or

large evolutionary scale. If  < T, then for each current

solution, the closest trial solution with the smallest evolutionary

scale is selected as the final offspring (lines 6 and 7). Otherwise,

the farthest trial solution with the largest evolutionary scale is

selected as the final offspring (lines 11 and 12). The offspring

is evaluated in line 15 and then  is calculated in line 16.

Finally, line 17 updates  by using Eq. (12). Note that if the

exploitation and exploration features of the generation

strategies are known, lines 1−3 could be removed, and lines

5−8 and lines 10−13 could be replaced by the offspring

generation of an exploitative and an explorative strategy

respectively.

Algorithm 2: ESA

Input: Xg: current population at generation g;

Zk
, g (k = 1, 2, ···, K): the K trial population generated by

K strategies at generation g;

NP: population size;

 : evolutionary scale indicator;

T: threshold for  ;

a: a constant for updating  .

Output: U: final offspring;

 : updated evolutionary scale indicator.

1: For i = 1 : NP

2: Measure the distance Li
k between Xi, g and each of the

corresponding trial solutions Zi
k
, g (k = 1, 2, ···, K);

3: End For

4: If  < T

5: For i = 1 : NP

6: argmin();k

i
k

index L=

7: Ui, g = Zi
index

, g;

8: End For

9: Else

10: For i = 1 : NP

11: argmax();k

i
k

index L=

12: Ui, g = Zi
index

, g;

5

13: End For

14: End If

15: Evaluate the fitness of Ug;

16: Calculate  according to SSE (Algorithm 1);

17: Update (1)a a  = −  +  .

3.3 Overall framework

 Based on ESA, the overall framework of evolutionary scale

adaptive DE (ESADE) is shown in Algorithm 3. Line 1

initializes the population. Afterwards, at each generation g, line

3 first performs the generation procedure given by the K

strategies to generate K trial population. Line 4 then performs

the ESA method to obtain the final offspring for each individual

and update the evolutionary scale indicator  . Finally, DE’s

selection is performed between Xg and Ug (line 5).

Algorithm 3: ESADE

Input: K strategies;

 = 0.5: initial value for  ;

T: threshold for  ;

gmax: maximum number of generations.
Output: xb: found best solution.

1: Initialize the population X0, set the generation count g = 0;

2: While g ≤ gmax

3: Perform DE’s mutation and crossover given by the K

strategies for Xg to generate K trial population Zk
 g (k = 1,

2, ···, K);

4: Perform ESA (Algorithm 2) to obtain the final offspring

Ug and update the evolutionary scale indicator  ;

5: Perform DE’s selection between Xg and Ug to obtain the

population Xg+1 for the next generation;

6: g = g +1;

7: End While

8: Obtain the best solution xb from the final population.

3.4 Novelty of ESA

 With the above descriptions, we would like to highlight the

novelty and contribution of the proposed ESA method.

(1) ESA utilizes the successful evolutionary scale in the

solution space for strategy adaptation, which is

commonly neglected in the existing multi-strategy

adaptation methods for DE.

(2) Most multi-strategy adaptation methods are based on the

competition of strategies and the derived successful

experience of each strategy. While ESA focuses on the

evolutionary scale instead of the identity of the strategy.

(3) The final offspring in ESA is adaptively selected from the

candidate solutions by the distance measure, which

explicitly controls the evolutionary scale of each solution.

Although some multi-strategy methods [36][22] also

considered the distance between trial vectors and target

1 The source code of ESADE is publicly available at

https://zsxhomepage.github.io

vectors, ESA owns significant differences. In [36], Bujok

proposed to use the farthest trial vectors from target

vectors when the ratio FES/maxFES is relatively small

and to use the closest trial vectors from the fittest solution

otherwise, where FES is the currently consumed function

evaluations and maxFES is the maximum function

evaluations. Therefore, the adjustment of mutation

strategy in [36] depends on the evolutionary process and

is not in an adaptive manner. In [22], the pre-selection of

the closest or farthest trial vectors from target vectors is

based on the fitness ranking of target vectors. Thus, it is

also not an adaptive method that could dynamically adjust

strategy according to different problems.

3.5 Time complexity

The complexity of generating the K candidates is O(K•NP•D),

while the distance calculation between the candidates and the

corresponding current solution is O(K•NP•D). The complexity

of the distance ranking is O(NP•log2NP). Thus, the overall time

complexity of ESA at one generation is O(K•NP•D + NP•log2

NP). And it becomes O(NP•D + NP•log2NP) if the exploitation

and exploration features of the generation strategies are known.

4 Simulation

In this section, experiments are performed to verify the

effectiveness of the proposed ESA method. The CEC2017

benchmark suite [37], which consists of 29 functions is

employed. Functions F1 and F3 are unimodal functions while

F4−F10 are simple multimodal functions. F11−F20 are hybrid

functions and F21−F30 are composition functions. The

performance of an algorithm is evaluated by the solution error

value SE, which is defined as f(x) − f(x*), where x represents

the best solution found with the maximum number of function

evaluations of 10,000 × D and x* is the optimal solution. For

each algorithm on each problem, 51 runs are performed, and the

mean and standard deviation of SE are reported. In addition, the

Wilcoxon rank-sum test [38] at a significance level of 0.05 is

used to test the statistical significance of the performance

between two algorithms. The results denoted as “+/=/−”

indicate that our algorithm performs significantly better than

(i.e., win), comparable to (i.e., tie), or worse than (i.e., lose) the

compared algorithm respectively. The parameter T of ESA is

set to 0.5.

4.1 Effectiveness of ESA

 To validate the effectiveness of ESA, it is first incorporated

into two baseline DEs, i.e., the jSO [39] and the L-

SHADE_cnEpsin [40] algorithms. The resultant variant

ESADE1 is respectively compared with the baselines. Note that

the selection of strategies for ESA is not arbitrary because they

should have advantages for different types of problems. Hence,

jSO and L-SHADE_cnEpsin are appropriate choices.

6

Table 1 Performance comparison of ESADE with the baselines on 30-D, 50-D and 100-D CEC2017 benchmark set

over 51 independent runs

30-D

jSO

L-SHADE_

cnEpSin
ESADE

mean std sig mean std sig mean std

F1 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00

F3 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00

F4 5.86E+01 3.11E-14 + 4.12E+01 3.49E+00 - 4.96E+01 1.90E+00

F5 7.55E+00 1.98E+00 = 1.19E+01 1.81E+00 + 7.57E+00 1.45E+00

F6 2.32E-08 6.21E-08 = 8.27E-09 2.81E-08 = 5.40E-08 1.28E-07

F7 3.87E+01 1.88E+00 = 4.33E+01 2.68E+00 + 3.85E+01 1.62E+00

F8 8.09E+00 2.07E+00 = 1.28E+01 2.31E+00 + 7.58E+00 1.46E+00

F9 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00

F10 1.63E+03 2.80E+02 + 1.45E+03 2.44E+02 = 1.54E+03 1.93E+02

F11 4.58E+00 1.17E+01 - 1.41E+01 2.01E+01 + 7.72E+00 1.50E+01

F12 1.47E+02 9.72E+01 + 3.73E+02 2.11E+02 + 1.01E+02 8.54E+01

F13 1.88E+01 4.34E+00 = 1.63E+01 9.82E+00 - 1.74E+01 5.93E+00

F14 2.18E+01 1.11E+00 + 2.15E+01 3.74E+00 + 1.96E+01 4.49E+00

F15 1.32E+00 1.05E+00 - 3.05E+00 1.57E+00 = 2.76E+00 2.06E+00

F16 5.49E+01 7.20E+01 + 1.91E+01 1.84E+01 = 2.13E+01 2.48E+01

F17 3.61E+01 7.83E+00 + 2.79E+01 7.46E+00 - 3.35E+01 5.88E+00

F18 2.09E+01 4.21E-01 + 2.11E+01 7.15E-01 = 2.06E+01 3.40E-01

F19 4.43E+00 1.54E+00 - 5.48E+00 1.60E+00 = 5.59E+00 1.03E+00

F20 3.44E+01 5.19E+00 + 3.04E+01 4.90E+00 = 3.20E+01 5.70E+00

F21 2.08E+02 2.22E+00 = 2.13E+02 2.69E+00 + 2.08E+02 1.60E+00

F22 1.00E+02 1.44E-14 = 1.00E+02 1.44E-14 = 1.00E+02 1.08E-13

F23 3.50E+02 2.78E+00 = 3.54E+02 2.91E+00 + 3.50E+02 2.20E+00

F24 4.26E+02 2.30E+00 = 4.28E+02 2.89E+00 + 4.26E+02 1.65E+00

F25 3.87E+02 6.29E-03 + 3.87E+02 8.01E-03 = 3.87E+02 3.90E-03

F26 9.35E+02 3.71E+01 + 9.43E+02 4.45E+01 + 8.87E+02 2.93E+01

F27 4.97E+02 7.20E+00 = 5.02E+02 5.26E+00 + 4.98E+02 6.43E+00

F28 3.04E+02 2.13E+01 - 3.19E+02 4.26E+01 = 3.13E+02 3.65E+01

F29 4.46E+02 1.41E+01 + 4.35E+02 7.48E+00 = 4.36E+02 1.19E+01

F30 1.97E+03 1.13E+01 = 1.98E+03 4.52E+01 = 1.98E+03 3.25E+01

W

T

L

11

14

4

11

15

3

50-D

jSO

L-SHADE_

cnEpSin
ESADE

mean std sig mean std sig mean std

F1 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00

F3 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00

F4 5.29E+01 4.64E+01 = 4.91E+01 4.28E+01 - 7.56E+01 5.21E+01

F5 1.49E+01 3.10E+00 + 2.57E+01 6.28E+00 + 1.25E+01 2.06E+00

F6 1.71E-07 3.18E-07 - 8.72E-07 7.35E-07 = 1.02E-06 1.24E-06

F7 6.65E+01 2.84E+00 + 7.67E+01 5.87E+00 + 6.42E+01 2.13E+00

F8 1.46E+01 3.69E+00 = 2.78E+01 6.28E+00 + 1.34E+01 2.24E+00

F9 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00

F10 3.57E+03 4.52E+02 + 3.11E+03 2.42E+02 = 3.04E+03 3.47E+02

F11 2.49E+01 3.84E+00 + 2.19E+01 1.75E+00 = 2.16E+01 2.49E+00

F12 1.79E+03 5.25E+02 + 1.37E+03 4.05E+02 + 8.55E+02 3.13E+02

F13 3.56E+01 2.66E+01 = 7.24E+01 3.69E+01 + 4.43E+01 2.93E+01

F14 2.34E+01 1.73E+00 = 2.65E+01 2.04E+00 + 2.35E+01 1.25E+00

F15 2.23E+01 1.72E+00 + 2.65E+01 3.95E+00 + 2.03E+01 1.80E+00

F16 3.74E+02 1.56E+02 + 3.05E+02 1.11E+02 = 3.00E+02 1.25E+02

F17 2.59E+02 9.56E+01 + 2.21E+02 7.46E+01 = 2.09E+02 8.32E+01

F18 2.41E+01 1.93E+00 + 2.46E+01 2.84E+00 + 2.27E+01 1.15E+00

F19 1.26E+01 2.97E+00 = 1.73E+01 3.09E+00 + 1.32E+01 1.87E+00

F20 1.51E+02 7.80E+01 + 1.12E+02 3.13E+01 = 1.21E+02 5.21E+01

F21 2.15E+02 4.06E+00 = 2.28E+02 6.91E+00 + 2.15E+02 2.35E+00

F22 1.55E+03 1.91E+03 = 1.33E+03 1.68E+03 - 2.51E+03 1.67E+03

F23 4.31E+02 5.53E+00 + 4.39E+02 7.30E+00 + 4.27E+02 4.89E+00

F24 5.07E+02 3.48E+00 = 5.12E+02 5.39E+00 + 5.07E+02 3.27E+00

F25 4.80E+02 1.62E+00 + 4.80E+02 1.77E+00 - 4.81E+02 2.81E+00

F26 1.14E+03 5.12E+01 + 1.22E+03 1.04E+02 + 1.09E+03 4.91E+01

F27 5.11E+02 1.07E+01 - 5.31E+02 1.25E+01 + 5.17E+02 1.27E+01

F28 4.59E+02 2.10E-13 + 4.58E+02 6.86E+00 - 4.58E+02 1.73E-01

F29 3.72E+02 1.60E+01 + 3.53E+02 8.58E+00 - 3.59E+02 1.05E+01

F30 6.08E+05 2.95E+04 = 6.47E+05 5.62E+04 = 6.31E+05 5.25E+04

W

T

L

15

12

2

14

10

5

7

Table 1 (Continued) Performance comparison of ESADE with the baselines on 30-D, 50-D and 100-D CEC2017 benchmark set

over 51 independent runs

100-D

jSO

L-SHADE_

cnEpSin
ESADE

mean std sig mean std sig mean std

F1 7.36E-10 3.70E-09 = 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00

F3 3.72E-06 4.19E-06 + 0.00E+00 0.00E+00 - 2.11E-07 2.35E-07

F4 1.98E+02 1.08E+01 = 1.99E+02 7.77E+00 - 2.03E+02 1.14E+01

F5 3.65E+01 8.17E+00 + 5.87E+01 1.34E+01 + 2.57E+01 3.41E+00

F6 1.63E-04 4.77E-04 + 6.11E-05 2.43E-05 + 1.97E-05 1.20E-05

F7 1.43E+02 7.38E+00 + 1.62E+02 6.55E+00 + 1.27E+02 3.32E+00

F8 3.59E+01 8.02E+00 + 5.48E+01 6.72E+00 + 2.64E+01 3.90E+00

F9 7.02E-03 2.43E-02 + 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00

F10 1.07E+04 8.40E+02 + 1.05E+04 4.94E+02 + 8.97E+03 4.66E+02

F11 9.13E+01 2.87E+01 + 5.72E+01 3.97E+01 = 4.85E+01 3.20E+01

F12 1.80E+04 9.69E+03 + 4.53E+03 7.12E+02 - 4.95E+03 8.95E+02

F13 1.56E+02 4.71E+01 + 1.11E+02 3.56E+01 + 7.13E+01 2.76E+01

F14 5.38E+01 7.36E+00 + 4.98E+01 7.19E+00 + 3.91E+01 3.77E+00

F15 1.59E+02 3.98E+01 + 8.89E+01 3.11E+01 = 7.98E+01 3.14E+01

F16 1.75E+03 3.60E+02 + 1.18E+03 2.58E+02 - 1.45E+03 2.13E+02

F17 1.32E+03 2.57E+02 + 9.22E+02 1.68E+02 - 1.03E+03 1.95E+02

F18 1.79E+02 3.51E+01 + 7.28E+01 1.69E+01 + 5.57E+01 1.42E+01

F19 8.90E+01 1.74E+01 + 5.53E+01 7.47E+00 + 4.79E+01 5.57E+00

F20 1.55E+03 2.76E+02 + 1.11E+03 1.74E+02 - 1.19E+03 1.38E+02

F21 2.56E+02 9.67E+00 + 2.77E+02 5.02E+00 + 2.51E+02 4.41E+00

F22 1.16E+04 7.14E+02 + 1.06E+04 7.36E+02 + 9.78E+03 4.93E+02

F23 5.67E+02 7.94E+00 + 5.95E+02 9.19E+00 + 5.52E+02 1.09E+01

F24 8.99E+02 7.05E+00 = 9.17E+02 1.46E+01 + 8.99E+02 5.65E+00

F25 7.35E+02 3.45E+01 + 6.73E+02 4.11E+01 = 6.64E+02 4.34E+01

F26 3.21E+03 7.78E+01 + 3.08E+03 1.39E+02 = 3.10E+03 8.69E+01

F27 5.84E+02 1.83E+01 = 5.87E+02 1.92E+01 + 5.76E+02 2.02E+01

F28 5.23E+02 2.17E+01 + 5.12E+02 1.90E+01 = 5.13E+02 2.55E+01

F29 1.24E+03 1.76E+02 = 1.07E+03 1.37E+02 - 1.22E+03 1.56E+02

F30 2.35E+03 1.39E+02 + 2.39E+03 1.64E+02 + 2.28E+03 1.76E+02

W

T

L

24

5

0

15

7

7

Table 2

Overall performance comparisons of ESADE with jSO and L-

SHADE_cnEpSin according to Holm, Hochberg and Hommel procedures

v.s. unadjusted p pHolm pHochberg pHommel

jSO 0.000069 0.000138 0.000138 0.000138

L-SHADE

_cnEpSin
0.000274 0.000274 0.000274 0.000274

8

Performance comparisons on 30-D, 50-D and 100-D

functions are shown in Table 1. From Table 1, it is evident from

our evaluations that the overall performance of the proposed

ESADE is superior to the other two methods. Specifically,

ESADE performs significantly better than jSO on 11, 15 and 24

functions and loses on 4, 2 and 0 functions in the cases of 30-D,

50-D and 100-D respectively. Compared with L-

SHADE_cnEpSin, ESADE outperforms on 11, 14, 15 and

underperforms on 3, 5 and 7 functions respectively. Notably,

the performance superiority of ESADE becomes more

prominent as dimensionality D increases. For instance, ESADE

exhibits remarkable superiority in more than half of the tested

functions in the 100-D case. These results demonstrate that

ESADE is capable of effectively handling complex

optimization problems, thereby showcasing the robustness and

suitability for a wide range of applications.

 Except the above single problem comparison, multi-problem

statistical tests have also been performed, as shown in Table 2.

According to the Holm, Hochberg and Hommel procedures,

ESADE is significantly better than the other two algorithms

with the outcome p values smaller than 0.05.

Fig. 1 shows the convergence curves on nine selected

functions. As seen, ESADE achieves the best final solutions on

eight functions, including 30-D F26, 50-D F5, 50-D F12, 50-D

F18, 100-D F8, 100-D F13, 100-D F21, 100-D F23 and

competitive performance on one function, i.e., 30-D F7 when

compared with jSO.

4.2 Comparison with state-of-the-art DE variants

 To demonstrate the performance of ESADE, it is further

compared with the following five state-of-the-art DE variants:

PaDE [41]: An improved L-SHADE algorithm with a novel

parameter adaptation method.

SCSS-L-SHADE [22]: A similarity selection-based

improved L-SHADE.

EaDE [32]: An adaptive DE algorithm based on an explicit

adaptation mechanism.

Fig. 1 Convergence curves of ESADE and the baselines on the nine selected functions in the run with the median error value.

0 50000 100000 150000 200000 250000 300000

1E+2

1E+3

F
it

n
es

s

FES

 jSO

 L-SHADE_cnEpSin

 ESADE

30-D F7

0 50000 100000 150000 200000 250000 300000

1E+3

1.5E+3

2E+3

2.5E+3

3E+3

3.5E+3

4E+3

F
it

n
es

s
FES

 jSO

 L-SHADE_cnEpSin

 ESADE

30-D F26

0 100000 200000 300000 400000 500000

1E+1

1E+2

F
it

n
es

s

FES

 jSO

 L-SHADE_cnEpSin

 ESADE

50-D F5

0 100000 200000 300000 400000 500000
1E+02

1E+03

1E+04

1E+05

1E+06

1E+07

1E+08

1E+09

1E+10

1E+11

F
it

n
es

s

FES

 jSO

 L-SHADE_cnEpSin

 ESADE

50-D F12

0 100000 200000 300000 400000 500000
1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1E+7

1E+8

F
it

n
es

s

FES

 jSO

 L-SHADE_cnEpSin

 ESADE

50-D F18

0 200000 400000 600000 800000 1000000

1E+2

1E+3

F
it

n
es

s

FES

 jSO

 L-SHADE_cnEpSin

 ESADE

100-D F8

0 200000 400000 600000 800000 1000000
1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+07

1E+08

1E+09

1E+10

F
it

n
es

s

FES

 jSO

 L-SHADE_cnEpSin

 ESADE

100-D F13

0 200000 400000 600000 800000 1000000
2E+2

4E+2

6E+2

8E+2

1E+3

1.2E+3

1.4E+3

F
it

n
es

s

FES

 jSO

 L-SHADE_cnEpSin

 ESADE

100-D F21

0 200000 400000 600000 800000 1000000

6E+2

8E+2

1E+3

1.2E+3

1.4E+3

1.6E+3

1.8E+3

2E+3

F
it

n
es

s

FES

 jSO

 L-SHADE_cnEpSin

 ESADE

100-D F23

9

L-SHADE-RSP [42]: An improved jSO algorithm with a

selective pressure strategy.

EJADE [35]: A state-of-the-art improved JADE algorithm

with a dual trial vector mechanism.

DISH [14]: An enhanced jSO algorithm with distance-based

parameter adaptation.

SCSS-jSO [22]: An advanced jSO algorithm with a similarity

selection mechanism.

DTDE [43]: A state-of-the-art DE variant based on domain

transform.

To ensure a fair comparison, parameters recommended in the

corresponding literature are adopted as they have originally

been tuned for the same CEC2017 functions. Performance
comparisons on 30-D, 50-D and 100-D functions are shown in

Table S1 in the supplementary file. Based on the results

summarized in Table 3, it can be observed that ESADE

demonstrates favorable performance across most scenarios

compared to other variants. The only exceptions are in 30-D,

where it is outperformed by EaDE, SCSS-jSO and DTDE, and

in 50-D, where it is inferior to DTDE. However, in the

remaining cases, ESADE consistently showcases superior

performance. Notably, when D increases to 100, ESADE

exhibits significant advancement over PaDE, SCSS-L-SHADE,

EaDE, L-SHADE-RSP, EJADE, DISH, SCSS-jSO and DTDE

on 24, 23, 21, 17, 27, 19, 16 and 15 functions respectively. This

implies that ESADE performs uniquely well when dealing with

complex problems in high-dimensional spaces, and it might be

explained by the capability of ESA to capture the successful

evolutionary scale in high-dimensional problems for better

adjusting the exploitation and exploration directions.

According to the p-values given by the multi-problem test in

Table 4, it is evident that ESADE statistically outperforms

PaDE, SCSS-L-SHADE, EaDE, EJADE and DISH as the p-

values are below 0.05 for all cases. Compared with L-SHADE-

RSP, the unadjusted p value is below 0.05 but it is not

significant according to the Holm, Hochberg and Hommel

procedures. In comparison to SCSS-jSO and DTDE, the

superiority is not significant. Note that when compared with

DTDE, the p-values are obtained using DTDE as the control

algorithm. Overall, it can be inferred that ESADE performs

significantly better than most of the compared DE variants. The

performance ranking given by Friedman test is shown in Table

5, from which ESADE achieves the ranking of 3.72, which is

competitive to DTDE and much higher than the rest DEs.

Table 3
Comparison results with state-of-the-art DEs according to single problem

Wilcoxon’s test

v.s.
30-D 50-D 100-D

win tie lose win tie lose win tie lose

PaDE 12 11 6 17 8 4 24 2 3

SCSS-L-
SHADE

8 17 4 11 13 5 23 5 1

EaDE 8 11 10 11 13 5 21 8 0

L-SHADE

-RSP
9 14 6 10 13 6 17 12 0

EJADE 17 7 5 22 5 2 27 1 1

DISH 12 14 3 13 12 4 19 6 4

SCSS-jSO 6 16 7 7 15 7 16 11 2

DTDE 8 9 12 9 5 15 15 3 11

Table 4

Overall performance comparisons of ESADE with state-of-the-art DEs
according to Holm, Hochberg and Hommel procedures

v.s. unadjusted p pHolm pHochberg pHommel

PaDE <1e-8 <1e-8 <1e-8 <1e-8

SCSS-L-SHADE 0.000095 0.00057 0.00057 0.00057

EaDE 0.004169 0.01167 0.01167 0.01167

L-SHADE-RSP 0.044757 0.134271 0.134271 0.134271

EJADE <1e-8 <1e-8 <1e-8 <1e-8

DISH 0.002922 0.014611 0.014611 0.011689

SCSS-jSO 0.579828 1.159655 0.944827 0.944827

DTDE 0.944827 1.159655 0.944827 0.944827

Table 5

Overall performance ranking of the considered DEs

Algorithm Ranking

PaDE 6.08

SCSS-L-SHADE 5.35

EaDE 4.91

L-SHADE-RSP 4.56

EJADE 7.67

DISH 4.96

SCSS-jSO 3.95

DTDE 3.75

ESADE 3.72

Table 6
U-score and U-rank achieved by the DEs

 30-D 50-D 100-D

Algorithm
U-

Score

U-

Rank

U-

Score

U-

Rank

U-

Score

U-

Rank

jSO 349702 10 384301 9 339521 9

L-SHADE
_cnEpSin

407812 6 397470 8 453775 5

PaDE 396981 8 338322 10 260048 10

SCSS-L-

SHADE
405813 7 407668 6 345990 8

EaDE 454086 4 424471 5 383472 7

L-SHADE

-RSP
408174 5 451270 4 457422 4

EJADE 329764 11 209727 11 206853 11

DISH 351611 9 401501 7 448084 6

SCSS-jSO 460624 3 474042 3 515557 3

DTDE 526588 1 556489 1 540905 2

ESADE 465848 2 511742 2 605376 1

10

Apart from the above statistical analyses, the trial-based

dominance approach proposed by Price et al. [44] that could

measure both the speed and accuracy of stochastic optimizers is

also considered for performance comparison of the DEs. The

target error value EVmin for the approach is set to 1E−8 in this

experiment. The U-score [44] and its ranking U-rank achieved

in the 30-D, 50-D, 100-D are shown in Table 6. From Table 6,

ESADE obtains the 1st rank in the 100-D case, the 2nd rank in

the 30-D and 50-D cases, while DTDE obtains the 1st rank in

the 30-D and 50-D cases.

4.3 Comparison with state-of-the-art multi-strategy

methods

To address the inefficiency of solving different problems at

different stages with a single fixed strategy, scholars have

proposed several multi-strategy methods. The following six

methods are considered for comparison with ESA.

 Sa [15]: A memory-based strategy adaptation method from

the SaDE algorithm.

 EPS [23]: A success-based strategy adaptation method from

the EPSDE algorithm.

 SaM [17]: An index-based strategy adaptation by the

parameter adaptation of the JADE algorithm.

 CSM [21]: A multi-strategy method that selects offspring

based on a cheap surrogate model.

 UM [33]: A multi-strategy method that selects offspring

based on an underestimation model.

 SCSS [22]: A multi-strategy method that selects offspring

based on a fitness-based similarity selection rule.

To facilitate direct performance comparisons, all the methods

are respectively implemented on the two baselines, i.e., jSO and

L-SHADE_cnEpSin. Among all the methods, EPS, SaM, CSM

and SCSS are parameter-free and therefore, there are no

parameters to tune for the CEC2017 functions. UM has been

tuned for the CEC2017 functions in [33]. While for Sa, the

learning period LP is set as {10, 30, 50, 70, 90} respectively

and the one (LP = 50) with the best overall performance given

by Friedman test is adopted.

From Table S2 in the supplementary file and Table 7, in the

30-D, ESA performs similarly to Sa, EPS and SaM,

outperforms CSM and UM but underperforms SCSS. While in

the 50-D and 100-D cases, ESA is consistently the best methods.

For instance, in the 100-D case, ESA outperforms on 16, 18, 15,

20, 23, 14 functions and loses on 4, 4, 6, 6, 0, 4 functions

respectively. These findings indicate that when dealing with

large search space, the ESA mechanism allows for appropriate

strategy matching to adjust the search range and improve the

optimization efficiency.

Furthermore, Table 8 reports the achieved p-values

according to the Holm, Hochberg and Hommel procedures. It

can be concluded that ESA demonstrates its significant

superiority over five methods including Sa, EPS, SaM, CSM

and UM with p value smaller than 0.05 except for SCSS. The

overall performance ranking of all methods is shown in Table

9, from which ESA is the first-ranked.

4.4 Working mechanism of ESA

 To investigate the working process of ESA, the preference of

a small or large evolutionary scale which is determined by the

 value, is first analyzed. Following, the standard ESADE is

compared with several of its variants to demonstrate the

reasonability of the component designs from the perspective of

performance.

(1) Preference of small or large evolutionary scale

Fig. 2 plots the selection of a small or large evolutionary scale

over the evolution process in ESADE on four 50-D functions

F5, F13, F15 and F23, from which it is observed that:

1) For all four functions, a large evolutionary scale is more

favored at the early stage.

Table 7
Comparison results of ESA with other multi-strategy methods according to

single problem Wilcoxon’s test

v.s.
30-D 50-D 100-D

win tie lose win tie lose win tie lose

Sa 6 17 6 12 11 6 16 9 4

EPS 4 21 4 13 11 5 18 7 4

SaM 7 14 8 12 10 7 15 8 6

CSM 19 6 4 17 7 5 20 3 6

UM 16 11 2 18 9 2 23 6 0

SCSS 4 17 8 11 14 4 14 11 4

Table 8

Overall performance comparisons of ESA with multi-strategy methods

according to Holm, Hochberg and Hommel procedures

v.s. unadjusted p pHolm pHochberg pHommel

Sa 0.003789 0.011368 0.011368 0.011368

EPS 0.000584 0.002334 0.002334 0.002334

SaM 0.007651 0.015303 0.015303 0.015303

CSM <1e-8 <1e-8 <1e-8 <1e-8

UM <1e-8 0.000001 0.000001 0.000001

SCSS 0.50492 0.50492 0.50492 0.50492

Table 9

Overall performance ranking of the considered methods

Method Ranking

Sa 3.94

EPS 4.12

SaM 3.87

CSM 5.14

UM 4.68

SCSS 3.21

ESA 3

11

2) On F5 and F23, a large evolutionary scale is adopted at

the early stage, while at the latter stage which occupies

most of the function evaluations, a small scale is

consistently employed.

3) On F13 and F15, in the middle of the evolution process, a

small scale is consecutively used. While at the late stage,

small and large scales are non-dominated by each other,

and are competitive.

In summary, ESA could dynamically adjust the evolutionary

scale according to different evolutionary stages and different

problems.

(2) Comparison with the variants

 To verify the effectiveness of the components of ESA, three

variants are constructed as follows:

Variant-reverse: It reverses the decision on a small or large

evolutionary scale. Specifically, when  < T, a large

evolutionary scale is adopted. Otherwise, a small evolutionary

scale is used.

Variant-random: It randomly decides the employment of a

small or large evolutionary scale.

Variant-Amean: Instead of using the Lehmer mean, it uses

the arithmetic mean to calculate the  of Eq. (10).

Other settings are unaltered for a fair comparison.

Comparisons with the standard ESADE are shown in Table S3

and the results are summarized in Table 10. ESADE performs

much better than the variants. Specifically, the effectiveness of

ESA is confirmed by comparison with Variant-reverse and

Variant-random with the “win/lose” metric of “23/2” and “14/4”

respectively. The superiority is much more significant when

compared with Variant-reverse because the behavior of

Variant-reverse is exactly opposite to ESA. Compared with

Variant-Amean, the Lehmer mean in ESA could generate a

larger  , which is beneficial to maintaining population

diversity for solving the complicated multi-modal functions.

4.5 Application in real-world problems

Fig. 2 Plots of the selection of a small or large evolutionary scale over the evolution process in the run with the median error

value.

0 100000 200000 300000 400000 500000

1

2

E
v
o
lu

ti
o
n

a
ry

 S
ca

le

FES

large

small

50-D F5

0 100000 200000 300000 400000 500000

1.0

1.5

2.0

E
v

o
lu

ti
o

n
a

ry
 S

ca
le

FES

large

small

50-D F13

0 100000 200000 300000 400000 500000

1.0

1.5

2.0

E
v
o
lu

ti
o
n

a
ry

 S
ca

le

FES

large

small

50-D F15

0 100000 200000 300000 400000 500000

1.0

1.5

2.0

FES

small

50-D F23

large
E

v
o
lu

ti
o
n

a
ry

 S
ca

le

Table 10

Comparison results of ESADE with the variants according to
single problem Wilcoxon’s test

 win tie lose

Variant- reverse 23 4 2

Variant- random 14 11 4

Variant- Amean 19 9 1

12

To assess the performance of ESA on real-world

optimization, it is applied to eight representative problems from

the CEC2011 test suite [45], namely the Parameter Estimation

for Frequency Modulated (FM) Sound Waves (P1), the

Lennard-Jones Potential Problem (P2), the Tersoff Potential for

model Si (B) Problem (P3), the Tersoff Potential for model Si

(C) (P4), the Circular Antenna Array Design Problem (P5), the

DED instance 1 (P6), the ELD instance 4 (P7) and the

Hydrothermal Scheduling Instance 1 (P8).

The effectiveness of ESA could be clearly observed from

Table 11. Compared with jSO, ESADE advances the

performance on P2, P4−P8 but loses on P3. Compared with L-

SHADE_cnEpSin, ESADE outperforms on five problems,

including P1−P4 and P7 but loses on P6 and P8. Overall,

ESADE achieves the best performance on five problems while

jSO and L-SHADE_cnEpSin show advantages on one (P3) and

two (P6, P8) problems respectively.

Further, Tables S4 and 12 show the comparisons with other

multi-strategy methods. As seen, ESA exhibits superior

performance over Sa, EPS, SaM, CSM, UM and SCSS on 5, 5,

5, 5, 5, 4 problems and inferior performance on 0, 0, 0, 1, 0, 2

problems respectively, which is the best-performing among all

the considered methods.

4.6 More investigations on ESA

 (1) Parameter sensitivity

 To investigate the performance sensitivity to T, another eight

settings are examined, which range within [0.1, 0.9] with a step

of 0.1. From the comparison results as shown in Table 13, the

standard setting of 0.5 performs significantly better than the

eight settings. The superiority is much more significant

compared with a small or large T value. Since a small and a

large T would be a large and small evolutionary scale-favored

setting respectively, the results indicate that a median T could

better balance the local exploitation and exploration capabilities.

Besides T, performance sensitivity to the setting of a in Eq. (12)

and the initial  value is also studied, as shown in Tables 14

and 15 respectively. From Table 14, the performance degrades

as a increases. A large a value will result in a lack of sufficient

historical information to update  . From Table 15, the initial

 value does not have a significant impact on the performance

as all the settings perform similarly on almost all the functions.

The result indicates that the initial  has a little influence on

the adaptation.

 (2) Performance on low-level adaptation

Table 11

Effectiveness of ESA on the real-world problems

 jSO L-SHADE_cnEpSin ESADE

 mean std sig mean std sig mean std

Parameter Estimation for
Frequency Modulated (FM) Sound Waves

2.32E+00 4.50E+00 = 2.67E+00 4.63E+00 + 5.98E-01 2.42E+00

Lennard-Jones Potential Problem -2.75E+01 5.63E-01 + -2.75E+01 4.90E-01 + -2.79E+01 4.22E-01

Tersoff Potential for model Si (B) -3.68E+01 2.67E-01 − -3.68E+01 2.42E-01 + -3.68E+01 2.57E-01

Tersoff Potential for model Si (C) -2.92E+01 4.37E-04 + -2.92E+01 3.01E-04 + -2.92E+01 6.11E-05

Circular Antenna Array Design Problem -2.16E+01 7.34E-02 + -2.16E+01 8.53E-02 = -2.17E+01 8.94E-02

ELD Problems: DED instance 1 4.76E+04 2.82E+02 + 4.54E+04 3.03E+02 − 4.61E+04 3.75E+02

ELD Instance 4 1.23E+05 3.60E+02 + 1.23E+05 4.36E+02 + 1.22E+05 3.03E+02

Hydrothermal Scheduling Instance 1 9.26E+05 6.16E+02 + 9.24E+05 4.14E+02 − 9.25E+05 5.41E+02

+

=

−

6

1
1

5

1
2

 Table 12

Performance comparison of ESA with other multi-strategy methods on

the real-word problems

 Sa EPS SaM CSM UM SCSS

+

=

−

5

3
0

5

3
0

5

3
0

5

2
1

5

3
0

4

2
2

Table 13

Performance comparison of T = 0.5 with other settings on 50-D functions

 0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9

+

=

−

19

9

1

20

8

1

14

13

2

7

19

3

8

18

3

20

7

2

20

7

2

20

7

2

Table 14

Performance comparison of a = 0.1 with other settings on 50-D functions

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

+

=

−

1

27

1

2

25

2

3

26

0

3

26

0

4

25

0

6

22

1

8

20

1

7

22

0

Table 15

Performance comparison of initial  = 0.5 with other settings on 50-D

functions

 0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9

+

=

−

0

29

0

0

29

0

0

29

0

1

27

1

1

27

1

0

29

0

1

27

1

0

29

0

13

 The previous experiments show the effectiveness of ESA for

high-level adaptation, i.e., it is integrated with two DE variants.

To study its performance for low-level adaptation of mutation

strategies, ESA is implemented with “DE/rand/1” and

“DE/current-to-pbest/1”. The parameter adaptation of F and CR

is from SHADE [12] and the population size NP is set to 100.

Thus, the three algorithms are denoted as “SHADE-rand/1”,

“SHADE-current-to-pbest/1” and ESA-SHADE, respectively.

As shown in Tables S5 and 16, ESA-SHADE performs

significantly better than the other two algorithms with a single

mutation strategy. The total “win/lose” results in 30-D, 50-D

and 100-D cases are “30/3”, “41/2”, “42/6” respectively, which

confirms the effectiveness of ESA for low-level adaptation.

5 Conclusion

In this paper, we have proposed an evolutionary scale

adaptive DE, named ESADE for global optimization. With the

idea that the recently successful evolutionary scale information

could be further utilized to guide the evolution, ESA first

measures the overall successful evolutionary scale of the

population by a normalized ranking mechanism. An appropriate

evolutionary scale factor is obtained and further used to update

an evolutionary scale indicator. The evolutionary scale

indicator is then compared with a threshold to determine the

employment of a small or large evolutionary scale, i.e., to select

a close or a far trial vector.

The effectiveness of the proposed ESA method has been

confirmed by incorporating with state-of-the-art DEs. The

resultant ESADE performs statistically better than each of the

baseline DEs and several state-of-the-art DEs on the CEC2017

benchmark problems. The contribution of ESA has also been

illustrated by comparisons with six other multi-strategy

adaptation methods. Further comparison on real-world

problems has also demonstrated the advantage of the proposed

ESA method.

 As for future works, ESA would be extended to other state-

of-the-art baselines. Besides, its compatibility with other types

of optimizations, such as multimodal [46], multiobjective [47]

and multi-task [48] optimizations also needs to be studied.

Acknowledgements

The work described in this paper was supported by the

National Natural Science Foundation of China (No. 62201227;

No. 62071503) and the Guangzhou Basic and Applied Basic

Research (No. SL2022A04J01366).

References
[1] R. Storn, K. Price, Differential evolution–A simple and efficient heuristic for global optimization over continuous spaces, J. of Global Optim. 11 (1997)

341–359.
[2] S. Das, P.N. Suganthan, Differential evolution: a survey of the state-of-the-art, IEEE Trans. Evol. Comput. 15 (1) (2011) 4–31.

[3] S. Das, S. S. Mullick, P. N. Suganthan, Recent advances in differential evolution—An updated survey, Swarm Evol. Comput. 27 (2016) 1–30.

[4] K. R. Opara, J. Arabasb, Differential evolution: A survey of theoretical analyses, Swarm Evol. Comput 44 (2019) 546–558.
[5] R. D. Al-Dabbagh, F. Neri, N. Idris, M. S. Baba, Algorithm design issues in adaptive differential evolution: review and taxonomy, Swarm Evol. Comput.

43 (2018) 284–311.

[6] G. Li, Z. Wang, M. Gong, Expensive optimization via surrogate-assisted and model-free evolutionary optimization, IEEE Trans. Syst., Man, Cybern., Syst.
DOI: 10.1109/TSMC.2022.3219080, 2022.

[7] G. Wu, R. Mallipeddi, P. N. Suganthan, Ensemble strategies for population-based optimization algorithms – A survey, Swarm Evol. Comput. 44 (2019) 695–

711.
[8] L. M. Zheng, S. X. Zhang, K. S. Tang, S. Y. Zheng, Differential evolution powered by collective information, Inf. Sci. 399 (2017) 13–29.

[9] J. Zhang, A. C. Sanderson, JADE: Adaptive differential evolution with optional external archive, IEEE Trans. Evol. Comput. 13 (2009) 945–958.

[10] S.-M. Guo, C.-C. Yang, Enhancing differential evolution utilizing eigenvector-based crossover operator, IEEE Trans. Evol. Comput. 19 (2015) 31–49.
[11] X. Qiu, K. C. Tan, J.-X. Xu, Multiple exponential recombination for differential evolution, IEEE Trans. Cybernet. 47 (2017) 995–1006.

[12] R. Tanabe and A. S. Fukunaga, “Reviewing and benchmarking parameter control methods in differential evolution,” IEEE Trans. Cybern., vol. 50, pp. 1170-

1184, 2020.
[13] R. Tanabe, A. S. Fukunaga, Improving the search performance of SHADE using linear population size reduction, in Proc. IEEE Congr. Evol. Comput.,

Beijing, China, 2014, pp. 1658–1665.

[14] A. Viktorin, R. Senkerik, M. Pluhacek, T. Kadavy, A. Zamuda, Distance based parameter adaptation for success-history based differential evolution, Swarm
Evol. Comput. 50 (2019) 100462.

[15] A. K. Qin, V. L. Huang, P. N. Suganthan, Differential evolution algorithm with strategy adaptation for global numerical optimization, IEEE Trans. Evol.

Comput. 13 (2009) 398–417.
[16] G. Wu, R, Mallipeddi, P. N. Suganthan et al, Differential evolution with multi-population based ensemble of mutation strategies, Inf. Sci. 329 (2016) 329–

345.

[17] W. Gong, Z. Cai, C. X. Ling, H. Li, Enhanced differential evolution with adaptive strategies for numerical optimization, IEEE Trans. Syst., Man, Cybern.,
Cybern. 41 (2011) 397–413.

[18] L. Tang, Y. Dong, J. Liu, Differential evolution with an individual-dependent mechanism, IEEE Trans. Evol. Comput. 19 (2015) 560–574.

[19] Z. H. Zhan, Z. J. Wang, H. Jin et al, Adaptive distributed differential evolution, IEEE Trans. Cybernet. 11 (2020) 4633–4647.
[20] Y. Wang, Z. Cai, Q. Zhang, Differential evolution with composite trial vector generation strategies and control parameters, IEEE Trans. Evol. Comput. 15

(2011) 55–66.

[21] W. Gong, A. Zhou, Z. Cai, A multi-operator search strategy based on cheap surrogate models for evolutionary optimization, IEEE Trans. Evol. Comput. 19
(2015) 746–758.

[22] S. X. Zhang, W. S. Chan, Z. K. Peng, S. Y. Zheng, K. S. Tang, Selective-candidate framework with similarity selection rule for evolutionary optimization,

Swarm Evol. Comput. 56 (2020) 100696.
[23] R. Mallipeddi, P. Suganthan, Q. Pan, M. Tasgetiren, Differential evolution algorithm with ensemble of parameters and mutation strategies, Appl. Soft

Comput. 11 (2011) 1679–1696.

Table 16

Comparison results of ESA with single mutation strategy on 30-D, 50-D

and 100-D CEC2017 benchmark set

v.s.
30-D 50-D 100-D

win tie lose win tie lose win tie lose

SHADE-
rand/1

20 9 0 23 6 0 27 2 0

SHADE-

current-
to-pbest/1

10 16 3 18 9 2 15 8 6

14

[24] S. X. Zhang, S. Y. Zheng, L. M. Zheng, An efficient multiple variants coordination framework for differential evolution, IEEE Trans. Cybernet. 47 (2017)
2780–2793.

[25] S. Gao, Y. Yu, Y. Wang, J. Wang, J. Cheng and M. Zhou, Chaotic local search-based differential evolution algorithms for optimization, IEEE Trans. Syst.,

Man, Cybern., Syst. 51 (2021), 3954-3967.
[26] L. Cui, G. Li, Q. Lin, J. Chen, and N. Lu, Adaptive differential evolution algorithm with novel mutation strategies in multiple sub-populations, Comput.

Oper. Res. 67 (2016), 155−173.

[27] A. W. Mohamed, A. A. Hadi, and K. M. Jambi, Novel mutation strategy for enhancing SHADE and LSHADE algorithms for global numerical optimization,
Swarm Evol. Comput. 50 (2019), 100455.

[28] X-F. Liu, et al, Historical and heuristic-based adaptive differential evolution, IEEE Trans. Syst., Man, Cybern., Syst. 49 (2018) 2623–2635.

[29] S. X. Zhang, L. M. Zheng, K. S. Tang, S. Y. Zheng, W. S. Chan, Multi-layer competitive-cooperative framework for performance enhancement of differential
evolution, Inf. Sci. 482 (2019) 86–104.

[30] S. X. Zhang, S. Y. Zheng, L. M. Zheng, Differential evolution with objective and dimension knowledge utilization, Swarm Evol. Comput., 80 (2023) 101322.

[31] M. Tian, and X. Gao. Differential evolution with neighborhood-based adaptive evolution mechanism for numerical optimization, Inf. Sci. 478 (2019),
422−448

[32] S. X. Zhang, W. S. Chan, K. S. Tang and S. Y. Zheng, Adaptive strategy in differential evolution via explicit exploitation and exploration controls, Appl.

Soft Comput. 107 (2021), 107494.
[33] X. Zhou, G. Zhang. Differential evolution with underestimation-based multimutation strategy, IEEE Trans. Cybernet. 49 (2018) 1353–1364.

[34] X. -G. Zhou, C. -X. Peng, J. Liu, Y. Zhang and G. -J. Zhang, Underestimation-assisted global-local cooperative differential evolution and the application to

protein structure prediction, IEEE Trans. Evol. Comput. 24 (2020), 536-550.

[35] W. Yi, Y. Chen, Z. Pei, J. Lu, Adaptive differential evolution with ensembling operators for continuous optimization problems, Swarm Evol. Comput. 69

(2022) 100994.

[36] P. Bujok, Improving the convergence of differential evolution, In: Numerical analysis and its applications. NAA 2016. Lecture Notes in Computer Science,
10187. Springer, Cham. https://doi.org/10.1007/978-3-319-57099-0_26.

[37] N.H. Awad, M.Z. Ali, J.J. Liang, B.Y. Qu, P.N. Suganthan, Problem Definitions and Evaluation Criteria for the CEC 2017 Special Session and Competition

on Single Objective Real-Parameter Numerical Optimization, Nanyang Technol. Univ., Singapore, Nov, 2016.
[38] D. Sheskin, Handbook of Parametric and Nonparametric Statistical Procedures. London, U.K./Boca Raton, FL: Chapman & Hall/CRC, 2003.

[39] J. Brest, M. S Maučec, B. Bošković, Single objective real-parameter optimization: algorithm jSO, in Proc. IEEE Congr. Evol. Comput., San Sebastian, 2017,
pp. 1311–1318.

[40] N. H. Awad, M. Z. Ali, and P. N. Suganthan, Ensemble sinusoidal differential covariance matrix adaptation with Euclidean neighborhood for solving

CEC2017 benchmark problems, in Proc. IEEE Congr. Evol. Comput. Jun, pp. 372–379, 2017.
[41] Z. Meng, J.-S. Pan, K.-K. Tseng, PaDE: An enhanced differential evolution algorithm with novel control parameter adaptation schemes for numerical

optimization, Knowl. Based Syst. 168 (2019) 80–99.

[42] V. Stanovov, S. Akhmedova, E. Semenkin, LSHADE algorithm with rank-based selective pressure strategy for solving CEC 2017 benchmark problems, in
Proc. IEEE Congr. Evol. Comput., Rio de Janeiro, 2018, pp. 1–8.

[43] S. X. Zhang, Y. N. Wen, Y. H. Liu, L. M. Zheng and S. Y. Zheng, Differential evolution with domain transform, IEEE Trans. Evol. Comput. 27 (2023),

1440−1455.

[44] K. V. Price, A. Kumar, P. N. Suganthan, Trial-based dominance for comparing both the speed and accuracy of stochastic optimizers with standard non-

parametric tests, Swarm Evol. Comput. 78 (2023) 101287.

[45] S. Das, P.N. Suganthan, Problem definitions and evaluation criteria for CEC 2011 competition on testing evolutionary algorithms on real world optimization
problems, Jadavpur University, Nanyang Technological University, Technical Report, 2010.

[46] C. Yue, B. Qu, J. Liang, A multiobjective particle swarm optimizer using ring topology for solving multimodal multiobjective problems, IEEE Trans. Evol.

Comput., 22 (2017) 805–817.
[47] K. Li, Á. Fialho, S. Kwong, Q. Zhang, Adaptive operator selection with bandits for a multiobjective evolutionary algorithm based on decomposition, IEEE

Trans. Evol. Comput. 18 (2013) 114–130.

[48] G. Li, Q. Zhang, Z. Wang, Evolutionary competitive multitasking optimization, IEEE Trans. Evol. Comput., 26 (2022) 278–289.

CRediT author statement

Sheng Xin Zhang: Conceptualization, Methodology,

Software, Writing - Original Draft, Writing - Review &

Editing, Funding acquisition.

Xin Rou Hu：Software, Formal Analysis, Writing - Original

Draft.

Shao Yong Zheng: Writing - Review & Editing, Funding

acquisition.

Declaration of interests

☒ The authors declare that they have no known

competing financial interests or personal

relationships that could have appeared to influence

the work reported in this paper.

☐ The authors declare the following financial

interests/personal relationships which may be

considered as potential competing interests:

