
Applied Soft Computing 107 (2021) 107494

a

b

c

t
l
i
a
c
o
r
M
t

f
r
a
l
t
m
t

J

z

h
1

Contents lists available at ScienceDirect

Applied Soft Computing

journal homepage: www.elsevier.com/locate/asoc

Adaptive strategy in differential evolution via explicit exploitation and
exploration controls
Sheng Xin Zhang a,b,∗, Wing Shing Chan b, Kit Sang Tang b, Shao Yong Zheng c,∗∗

College of Information Science and Technology, Jinan University, Guangzhou, China
Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong
School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China

a r t i c l e i n f o

Article history:
Received 26 June 2020
Received in revised form 7 April 2021
Accepted 5 May 2021
Available online 11 May 2021

Keywords:
Adaptive strategy
Explicit exploitation and exploration
controls
Differential evolution
Evolutionary algorithm
Numerical optimization

a b s t r a c t

Existing multi-strategy adaptive differential evolution (DE) commonly involves trials of multiple
strategies and then rewards better-performing ones with more resources. However, the trials of an
exploitative or explorative strategy may result in over-exploitation or over-exploration. To improve
the performance, this paper proposes a new strategy adaptation method, named explicit adaptation
scheme (Ea scheme), which separates multiple strategies and employs them on-demand. It is done
by dividing the evolution process into several Selective-candidate with Similarity Selection (SCSS)
generations and adaptive generations. In the SCSS generations, the exploitation and exploration needs
are learnt by utilizing a balanced strategy. To meet these needs, in adaptive generations, two other
strategies, exploitative or explorative is adaptively used. Experimental studies on benchmark functions
demonstrate the effectiveness of Ea scheme when compared with its variants and other adaptation
methods. Furthermore, performance comparisons with state-of-the-art evolutionary algorithms and
swarm intelligence-based algorithms show that EaDE is very competitive.

© 2021 Elsevier B.V. All rights reserved.
s
s
f
a
a
D
M
o
b
s

b
f
s
h
o
t
t
b
(
o
I
d
d
t

1. Introduction

Exploitation and exploration are two cornerstones of evolu-
ionary algorithms (EAs) [1]. Exploitation refers to the greedy uti-
ization of the currently available information while exploration
s the process of discovering new searching areas. As is known,
n exploitative way of generating new solutions (i.e. strategy)
ould efficiently increase accuracy [2]. However, it has high risk
f converging to a local minimum. An explorative strategy can
educe this risk [3,4], but the accuracy may be unsatisfactory.
ulti-strategy methods aim to take advantages of both strategies

o improve performance.
In the past decade, multi-mutation strategy [5] based dif-

erential evolution (DE) [6–8] has gained much attention from
esearchers. It is generally believed that introducing multiple
lternative strategies in a single algorithm allows adjusting evo-
ution directions as well as evolution scales to meet the exploita-
ion and exploration needs for different searching tasks. Existing
ulti-strategy techniques can be summarized in the following

wo categories.

∗ Corresponding author at: College of Information Science and Technology,
inan University, Guangzhou, China.
∗∗ Corresponding author.

E-mail addresses: zhangsx@jnu.edu.cn (S.X. Zhang),
hengshaoy@mail.sysu.edu.cn (S.Y. Zheng).
ttps://doi.org/10.1016/j.asoc.2021.107494
568-4946/© 2021 Elsevier B.V. All rights reserved.
(1) Adaptive methods. In this category, adaptive operator
election [9–13] is a popular technique, which involves multiple
trategies in the evolution and the past success experience is used
or credit assignment to determine the probabilities of the oper-
tors that will be used further. This technique has been widely
dopted for constructing DE variants, e.g. Strategy adaptation
E (SaDE) [9], Strategy adaptation JADE (SaM-JADE) [10] and
ulti-population Ensemble strategy DE (MPEDE) [11] for single-
bjective optimization. In [12,13], strategy adaptation has also
een extended to multi-objective optimization. A comprehensive
urvey about strategy ensemble can be found in [5].
(2) Deterministic methods. Deterministic methods can also

e referred to as non-adaptive methods, which do not utilize
eedbacks from the previous search. In the Ensemble of Con-
traint Handling Techniques (ECHT) [14], different constraint
andling methods are employed to generate offspring for its
wn population. In the Composite DE (CoDE) [15] algorithm,
hree operators combined with three pairs of control parame-
ers are used to generate three candidates with the fittest one
eing selected as an offspring. In the Cheap Surrogate Model
CSM) [16], multiple candidates are generated from different
perators with the final offspring chosen by a density function.
n the Multiple sub-populations Adaptive DE (MPADE) [17], three
istinct strategies are assigned to three sub-populations with
ifferent fitness values. In the Underestimation-based Multimu-
ation Strategy (UMS) [18], the offspring is determined from

https://doi.org/10.1016/j.asoc.2021.107494
http://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2021.107494&domain=pdf
mailto:zhangsx@jnu.edu.cn
mailto:zhengshaoy@mail.sysu.edu.cn
https://doi.org/10.1016/j.asoc.2021.107494

S.X. Zhang, W.S. Chan, K.S. Tang et al. Applied Soft Computing 107 (2021) 107494

m .
I
r
c
f
s

l
i
e
p

s
b
a
n
a
o

2

S
p

ultiple candidates by an abstract convex underestimation model
n the Selective-candidate framework with Similarity Selection
ule (SCSS) [19] method, each current solution generates multiple
andidates using different operations and parameters while the
inal offspring is determined by the fitness ranking of the current
olution and its solution space distance to the candidates.
Although many advances have been achieved, it is still a chal-

enging task to remedy the drawbacks of multi-strategy, i.e. stuck
n local minima by an exploitative strategy or over-encouraging
xploration by an explorative strategy. In this paper, we pro-
ose a new explicit adaptation scheme (i.e. Ea scheme) with the

following new features for this task:
(1) Different from existing methods which use multiple strate-

gies at a time, the Ea scheme separates the strategies: one bal-
anced strategy in SCSS generations to optimize, while learning
the exploitation and exploration needs; the other two candidates:
one exploitative and one explorative are adaptively employed in
adaptive generations.

(2) Different from existing methods which adapt strategies
based on their online performance compared with those of oth-
ers, the Ea scheme does not involve the trials of multiple strate-
gies. Instead, it treats the optimization process as a sequence of
explicit exploitation and exploration tasks that could be handled
by the two candidate strategies, respectively. The prior knowl-
edge of the strategies is pre-studied offline and explicitly used in
the scheme.

The contributions of this paper are multi-fold: (1) we con-
struct and study the exploitation and exploration capabilities of
the strategies; (2) we propose the innovative Ea scheme and
demonstrate its advantages by comparison with other adapta-
tion methods; and (3) we construct the EaDE algorithm with
state-of-the-art performance.

The rest of the paper is organized as follows: Section 2 re-
views related works and discusses the novelty of the Ea scheme.
Section 3 describes the proposed method in detail. Section 4
presents the experimental validations together with discussions
while Section 5 concludes this work.

2. Backgrounds

2.1. Strategy adaptation in DE

In this paper, strategy refers to the way of generating new
solutions from the parent solutions, including mutation and
crossover operations of DE. While in DE literature [7,8], mutation
strategy, especially mutation strategy adaptation is more widely
studied. In DE with Global and Local mutation (DEGL) [20],
global and local mutation strategies are combined to balance
exploitation and exploration using an adaptive weighting factor.
In SaDE [9], four mutation strategies are adaptively used based
on their past success and fail experiences. In SaM-JADE [10],
four strategies are indexed, and the indices are regarded as
parameters for adaptation. In Adaptive strategy (Adap_SS) [21],
probability matching and adaptive pursuit techniques are used
to calculate the probabilities of strategies. In Ensemble of Param-
eters and mutation Strategies DE (EPSDE) [22], parameters and
strategies are distributed to solutions based on their successful
and fail experiences. In Zoning Evolution of Parameters based DE
(ZEPDE) [23], mutation strategies and parameters are adjusted
based on their fitness improvements. In MPEDE [11], three mu-
tation strategies are assigned to three small sub-populations and
the best-performing one is rewarded a large sub-population. In
MOEA/D-FRRMAB [12], four mutation strategies compete based
on multi-armed bandits. In Multistage DE (UMDE) [24], a strategy
pool is constructed based on the evolution stage and at the same
stage, different strategies compete based on their fitness im-
provements. In multiple variants coordination DE (MVCDE) [25],
2

multiple DE variants compete based on their contributions. In
Chaotic local search-based DE (CDE) [26], different chaotic maps
are adaptively used to generate new solutions based on their suc-
cess rates. In the above methods [9–12,21–26], successful strate-
gies/methods generally occupy more computation resources. In
Multi-topology DE (MTDE) [27], new solutions are generated us-
ing different topologies determined by different fitness values. In
Neighborhood-based DE (NDE) [28], two mutation strategies are
adaptively associated with superior and inferior solutions for ex-
ploitation and exploration purposes, respectively. In Multi-layer
Competitive–Cooperative DE (MLCCDE) [29], superior solutions
use multiple methods to generate solutions while inferior solu-
tions adaptively choose one method, which is designed with the
consideration of exploitation and exploration trade-off.

2.2. Novelty of the Ea scheme

Differences of the proposed Ea scheme compared to the pre-
vious adaptation methods are illustrated in Fig. 1: (1) Previous
methods usually involve multiple strategies with each strategy
assigned to a portion of the population. In contrast, the Ea scheme
employs one strategy at a time for the whole population; (2)
Previous methods usually trial multiple strategies and reward the
better-performing strategy. In determining whether a strategy is
better-performing or not, the metric is commonly greedy. For
example, in Fig. 1(a), three strategies compete at time t and as-
ume that the green one performs better, then at time t+1, it will
e rewarded with more resources. Differently, Ea scheme uses
balanced strategy to explicitly detect exploitation/exploration
eeds (Fig. 1(b)). Afterwards, the entire population switches to
n exploitative/explorative strategy. A performance comparison
f these methods will be presented in Section 4.3.

.3. Detection of exploitation/exploration need: SCSS method

In Selective-candidate with Similarity Selection rule based L-
HADE (SCSS-L-SHADE) [19], two independent reproductions are
erformed to generate two candidates u⃗m

i,G {m = 1, 2} for each
current solution x⃗i,G at each generation G and the offspring is de-
termined by the following similarity selection rule (Algorithm 1):

Here, randi(0,1) is a uniformly distributed random number
within (0,1) for each individual i, rank(i) is the fitness ranking
(the smaller, the better quality) and NP is the current population
size. In this rule, the superior solution prefers closer candidate,
while the inferior solution prefers the farther one. GD (greedy
degree) value controls the greediness of the selection rule. The
larger GD, the more current solutions select closer candidates
and consequently the algorithm becomes more exploitative. The
average distance of offspring from parent solutions in SCSS-L-
SHADE with GD = 0.5 (denoted as SCSS-L-SHADE_GD0.5) and
original L-SHADE is shown in Fig. 2.

It was reported in [19] that SCSS-L-SHADE_GD0.5 performs
better than L-SHADE on a wide variety of benchmarks and real-
world problems for its synthesis of exploitation (superior so-
lutions) and exploration (inferior solutions). Interestingly, the
motivation behind strategy adaptation is also to detect and meet
the exploitation and exploration needs (EEN). This motivates us
to utilize it as a tool for EEN detection.

3. EaDE (Explicitly adaptive DE)

3.1. Exploitation and exploration capabilities of the strategies in
EaDE

Besides SCSS-L-SHADE_GD0.5 (marked as S1), two other strate-
gies are maintained in EaDE, i.e. SCSS-L-SHADE with GD = 0.1 and

S.X. Zhang, W.S. Chan, K.S. Tang et al. Applied Soft Computing 107 (2021) 107494

Fig. 1. Illustration of the proposed and the previous adaptation methods. A blue square, red circle and green triangle denote that a balanced, exploitative and
explorative strategy is assigned to a solution respectively.

Fig. 2. Average distance of offspring from parent solutions in SCSS-L-SHADE_GD0.5 and the original L-SHADE (A population with 8 solutions is shown as an example).

3

S.X. Zhang, W.S. Chan, K.S. Tang et al. Applied Soft Computing 107 (2021) 107494

S

a

a
t
g
a
p
u
t
t
e
f

s
t
t
W
C
t
S
s

t

Fig. 3. R1 and R2 values on twenty-eight 30-D CEC2013 functions with maximum function evaluations 10000×D. For each function, 30 trials were performed.
CSS-L-CIPDE with GD = 0.9, denoted as SCSS-L-SHADE_GD0.1
(marked as S2) and SCSS-L-CIPDE_GD0.9 (marked as S3) respec-
tively. The difference between SCSS-L-SHADE and SCSS-L-CIPDE
lies in the mutation and crossover operations. The former em-
ploys the ‘‘current-to-pbest/1’’ mutation and classic binomial
crossover [30] while the latter uses the collective information
powered (CIP) mutation and hybrid crossover [31]. Detailed de-
scriptions of these operations can be found in the supplemen-
tal file. The principle behind employing these two strategies is
that SCSS-L-CIPDE_GD0.9 is relatively exploitative while SCSS-
L-SHADE_GD0.1 is relatively explorative. To demonstrate these
properties, we employed the three strategies to independently
sample three offspring populations u⃗i,G on the same parent pop-
ulation at each generation G on twenty-eight 30-dimensional
(30-D) CEC2013 benchmark functions [32].

Define diversity of the sampled populations as

DivG =
1
NP

NP∑
i=1

u⃗i,G − ūG
 (1)

where
u⃗i,G − ūG

 is the Euclidian distance between u⃗i,G and ūG,
nd ūG =

1
NP

∑NP
i=1 u⃗i,G.

In this experiment, we intended to compare the exploitation
nd exploration capabilities of S1 with S2 and S1 with S3, respec-
ively. To this end, we compared the diversity of the population
enerated by S1 and S2, S1 and S3 respectively at each generation
nd then counted accumulatively. The average times that the
opulation generated by S1 has smaller/larger diversity than pop-
lation by S2 are denoted as TS1<S2 and TS1>S2 respectively. Thus,
he ratio R1 = TS1<S2/TS1>S2 represents the relative greediness of
he two strategies. If the value is larger than 1, it means S1 is more
xploitative than S2. Similarly, we used ratio R2 = TS3<S1/TS3>S1
or the comparison of S1 and S3.

The obtained R1 and R2 values on the total 28 functions are
hown in Fig. 3. It is seen that R1 and R2 are consistently larger
han 1 on all the functions, indicating that S1 is more exploita-
ive than S2 and S3 is more exploitative than S1 respectively.
e have the following exploitation capability ranking: SCSS-L-
IPDE_GD0.9 > SCSS-L-SHADE_GD0.5 > SCSS-L-SHADE_GD0.1 and
hus the exploration capability ranking: SCSS-L-CIPDE_GD0.9 <
CSS-L-SHADE_GD0.5 < SCSS-L-SHADE_GD0.1, where ‘‘>’’ means
tronger than and ‘‘<’’ means weaker than.
With respect to the choice of GD values, firstly, we classified

he 30-D CEC2013 functions into two sets, i.e. Set 1 (larger GD
4

performs better) and Set 2 (smaller GD performs better). Thus,
these two sets can be used to examine the exploitation and
exploration capabilities of an algorithm respectively. Then we test
SCSS-L-CIPDE and SCSS-L-SHADE with eleven GD values (from 0.0
to 1.0 with step of 0.1) on Set 1 and Set 2, respectively. The overall
performance ranking by Friedman’s test [33] is shown in Table 1.
As suggested by the results, GD = 0.9 and 0.1 are respectively
chosen for SCSS-L-CIPDE and SCSS-L-SHADE.

3.2. Explicit adaptation (Ea scheme)

The division of different generations and the characteristics
of the associated strategies in the proposed Ea scheme are illus-
trated in Fig. 4. The entire evolution is segmented into several
non-overlapped intervals with equal number of generations. In
each interval, there are SCSS generations and adaptive genera-
tions with sizes of LEN and K×LEN respectively, where K is an
integer.

In SCSS generations, SCSS-L-SHADE_GD0.5 is performed and
the total fitness improvements of superior and inferior parts are
calculated respectively as:

IMP_S =

LEN∑
g=1

⌊NP/2⌋∑
rank(i)=1

∆fi (2)

IMP_I =

LEN∑
g=1

NP∑
rank(i)=⌈NP/2⌉+1

∆fi (3)

where ∆fi =

{
f (x⃗i,G) − f (u⃗i,G) if f (u⃗i,G) < f (x⃗i,G)
0 otherwise , ⌊·⌋ repre-

sents a floor function and ⌈·⌉ is a ceiling function.
In the adjacent adaptive generations, Algorithm 2 is per-

formed. The principle behind this design is as follows: Accord-
ing to Section 2.3, superior and inferior solutions in SCSS-L-
SHADE_GD0.5 are responsible for exploitation and exploration
tasks respectively. A larger contribution (i.e. total fitness improve-
ments) of the superior part compared to that of the inferior
part indicates that the current stage may need more exploitation
attempts. Therefore, an exploitative strategy SCSS-L-CIPDE_GD0.9
will be used. Otherwise, if the inferior part contributes more, an
explorative strategy may be more suitable. Effectiveness of the
proposed Ea scheme will be verified in Section 4.1.

S.X. Zhang, W.S. Chan, K.S. Tang et al. Applied Soft Computing 107 (2021) 107494

t
s

s
b
i
t
a
E
0
p

Table 1
Performance ranking of the GD values for SCSS-L-CIPDE (on Set 1) and SCSS-L-SHADE (on Set 2). The smaller ranking value, the
better.

GD

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Set1 10.50 10.00 8.90 7.20 6.20 3.80 3.80 3.80 2.60 2.20 7.00
Set2 5.83 4.12 4.20 4.29 4.41 4.91 4.75 6.33 8.00 8.91 10.20
Regarding the time complexity, it can be seen that it is rela-
ively low for the proposed method since it only involves O(NP)
ummation calculations at each generation.

3.3. Detection of evolution difficulty

With ‘‘current-to-pbest/1’’ mutation, in the early evolution
tage, compared to superior solutions, the inferior solutions can
e easily guided by the top-p fittest solutions and easier to be
mproved. Thus, at this stage, it may be unfair to compare these
wo parts. To address this problem, we propose a detection mech-
nism (DM) to detect evolution difficulty and combine it with the
a scheme. At the beginning, Ea is not triggered, i.e. Trigger =

. Then the total fitness improvements of superior and inferior
arts within every Q generations (Q is set to 10 in this paper) are

recorded respectively, denoted as FI_S and FI_I. At the early stage,
FI_I tends to be larger than FI_S. Once FI_S is larger than FI_I, it
means that the current evolution stage becomes difficult. The Ea
scheme is then triggered, i.e. Trigger = 1 and adopted until the
end of the search. Otherwise, SCSS-L-SHADE_GD0.5 is employed
and Trigger = 0.

To demonstrate the effectiveness of DM, four classic bench-
mark functions, including Sphere, Sum of different powers,
Schwefel and Rastrigin functions are used. Their mathematical
expressions and plots with two variables are shown in Table 2
and Fig. 5 respectively. As is known, Schwefel and Rastrigin
functions are more difficult to solve than Sphere and Sum of
different powers functions since they have many local minima.

Table 3 reports the trigger time on these four functions, where
t is the run-time of a single trial. It is seen that on two rela-
tively simple functions, i.e. Sphere and Sum of different powers
functions, Ea triggers at a very late stage, i.e. 0.92t and 0.94t
respectively. While on Schwefel and Rastrigin functions, Ea trig-
gers at 0.32t and 0.19t respectively. Considering the function
difficulty, this observation confirms that DM could effectively
detect the evolution difficulty.

Table 3 also collects the performance with and without DM. It
is seen that the algorithm with DM performs significantly better
on two simple functions. The reason is that DM could prevent

over-exploration in the early stage.

5

Table 2
Mathematical expressions of the functions.
Function Definition Search range

Sphere Function f1(x) =
∑D

i=1 xi
2 [−100, 100]D

Sum of different
powers Function

f2(x) =
∑D

i=1 |xi|i+1 [−1, 1]D

Schwefel Function f3(x) = 418.9829 × D −∑D
i=1 xi sin(

√
|xi|)

[−500, 500]D

Rastrigin Function f4(x) =
∑D

i=1[xi
2
−

10 cos(2πxi) + 10]
[−5, 5]D

Regarding the setting of Q, Table 4 shows the comparison
results of the standard setting Q = 10 with others. It is seen
that Q = 10 is the best choice. It performs better than smaller
Q settings mainly on the simple sphere and sum of different
powers functions while larger Q settings on the relatively difficult
Rastrigin function.

3.4. The complete EaDE algorithm

Combining the above methods, the complete EaDE algorithm
is described in Algorithm 3 and illustrated in Fig. 6. At the
beginning, SCSS-L-SHADE_GD0.5 is run and the Ea scheme is
not triggered (lines 1 and 2 in Algorithm 3). Line 3 detects the
evolution difficulty and if it enters a relatively difficult stage, Ea
scheme will be triggered (lines 6–13).

4. Simulation

In this section, we conduct experiments to verify the effec-
tiveness of the proposed method. The structure is organized
as follows: in Sections 4.1–4.3, the Ea scheme is compared re-
spectively with three variants, three components and two other
adaptation methods to verify its effectiveness. In Sections 4.4
and 4.5, EaDE is compared with state-of-the art optimization
algorithms to demonstrate its performance. Finally, in Section 4.6,
we investigate the performance sensitivity of EaDE to parameters
LEN and K and present some discussions on the number of
strategies, respectively.

The CEC2013 test suite [32] with twenty-eight minimization
benchmark functions is considered, as shown in Table 5. Perfor-
mance of algorithms are measured by the final obtain best solu-
tion. Following [32], solutions smaller than 10−8 are reported as
0. For each function, 51 trials are performed, each with 10000×D
maximum function evaluations (FES). The 5% significance level
Wilcoxon signed-rank test [33] is used to compare the perfor-
mance. When the compared algorithm is significantly worse than,
similar to or better than the algorithm under consideration, we
mark it as ‘‘−’’, ‘‘=’’ and ‘‘+’’, respectively. Parameters settings
for EaDE: The initial population size is set to 18 × D and linearly
decreased to 4 at the end, this setting is kept the same as SCSS-
L-SHADE [19]. The size of SCSS generations LEN is set to 30 and
the size of adaptive generations is set to K × LEN = 2 × 30 = 60.

S.X. Zhang, W.S. Chan, K.S. Tang et al. Applied Soft Computing 107 (2021) 107494

e
V

Fig. 4. Illustration of the Ea scheme, (a): division of generations; (b): characteristics of the associated strategies.
Fig. 5. Plots of 2-D functions: (a) Sphere function; (b) Sum of different powers function; (c) Schwefel function and (d) Rastrigin function. Two horizontal axes are
two variables while the vertical axis is the fitness.
Table 3
Trigger time on 30-D functions and performance contribution of DM. Maximum function evaluations = 10000 × D. For each function, 30 trials were
performed. Wilcoxon signed-rank test with 5% significance level is used to determine the significance.
Function Trigger Performance

at Without DM With DM Significance

Sphere Function 0.92t 9.86E−55 ± 2.91E−54 2.42E−78 ± 1.66E−77 better
Sum of different powers Function 0.94t 1.96E−123 ± 1.16E−122 3.69E−154 ± 2.19E−153 better
Schwefel Function 0.32t 3.82E−04 ± 3.57E−13 3.82E−04 ± 0.00E+00 similar
Rastrigin Function 0.19t 1.15E−15 ± 3.19E−15 6.27E−16 ± 1.58E−15 similar
S
u

i

4.1. Effectiveness of the Ea scheme: Comparison with three variants

Firstly, we construct the following three variants to verify the
ffectiveness of the Ea scheme.
ariant-oppo: It is an opposite version of Ea, as follows:
If IMP_S > IMP_I

Run SCSS-L-SHADE_GD0.1
Elseif IMP_S < IMP_I

Run SCSS-L-CIPDE_GD0.9
Elseif IMP_S = IMP_I
 G

6

Run a random strategy of the above two.
End If

Variant-random: Different from Ea, in adaptive generations,
CSS-L-SHADE_GD0.1 and SCSS-L-CIPDE_GD0.9 are randomly
sed.
Variant-TAE It is an adaptive with trial-and-error variant, as

llustrated in Fig. 7 and described as follows:
In trial generations, SCSS-L-CIPDE_GD0.9, SCSS-L- SHADE_

D0.5 and SCSS-L-SHADE_GD0.1 have an equal chance to be

S.X. Zhang, W.S. Chan, K.S. Tang et al. Applied Soft Computing 107 (2021) 107494

I

I

I

Fig. 6. Illustration of EaDE.
I

I

s
i
t
D
T

n

Table 4
Comparison results of Q = 10 with other settings.
Q 1 5 20 40 80 160 320 640 1280 2560

Sphere Function W W T T T T T T T T
Sum of different
powers Function

W T T T T T T T T T

Schwefel Function T T T T T T T T T T
Rastrigin Function T W W W W W W W W W

W: win, T: tie, L: lose.

used. Then record the total fitness improvements contributed
by them respectively, denoted as IMP_CIP and IMP_SHA_0.5 and
MP_SHA_0.1.

In the adjacent adaptive generations,
If IMP_CIP is the unique largest in {IMP_CIP, IMP_SHA_0.5,

MP_SHA_0.1}
Run SCSS-L-CIPDE_GD0.9

Elseif IMP_SHA_0.1 is the unique largest in {IMP_CIP,
MP_SHA_0.5, IMP_SHA_0.1}

Run SCSS-L-SHADE_GD0.1
7

Elseif IMP_SHA_0.5 is the unique largest in {IMP_CIP,
MP_SHA_0.5, IMP_SHA_0.1}

Run SCSS-L-SHADE_GD0.5
Elseif more than one largest value in {IMP_CIP, IMP_SHA_0.5,

MP_SHA_0.1}
Run a random strategy with the largest value.

End If
For a direct comparison, except the above differences, other

ettings are kept the same as EaDE. The pseudo-code is presented
n the supplemental file. Table S1 in the supplemental file reports
he mean (standard deviations) and comparison results for 10-
, 30-D, 50-D and 100-D cases. The results are summarized in
able 6 and discussed as follows:
(1) EaDE performs significantly better than Variant-oppo, win-

ing in 41 (= 6 + 11 + 13 + 11) cases and losing in 1 case. This
result confirms the effectiveness of Ea scheme.

(2) EaDE also outperforms Variant-random with the
‘‘win/tie/lose’’ results of ‘‘2/26/0’’, ‘‘6/22/0’’, ‘‘7/21/0’’ and ‘‘7/21/0’’
in 10-D, 30-D, 50-D and 100-D cases respectively with no func-
tion losing to Variant-random. Meanwhile, considering the results

of Variant-oppo, it is seen that Variant-random performs better

S.X. Zhang, W.S. Chan, K.S. Tang et al. Applied Soft Computing 107 (2021) 107494

V

Fig. 7. Illustration of Variant-TAE.
Table 5
The CEC2013 test suite.
F1 Sphere Function F11 Rastrigin’s Function
F2 Rotated High Conditioned Elliptic Function F12 Rotated Rastrigin’s Function
F3 Rotated Bent Cigar Function F13 Non-Continuous Rotated Rastrigin’s Function
F4 Rotated Discus Function F14 Schwefel’s Function
F5 Different Powers Function F15 Rotated Schwefel’s Function
F6 Rotated Rosenbrock’s Function F16 Rotated Katsuura Function
F7 Rotated Schaffers F7 Function F17 Lunacek Bi_Rastrigin Function
F8 Rotated Ackley’s Function F18 Rotated Lunacek Bi_Rastrigin Function
F9 Rotated Weierstrass Function F19 Expanded Griewank’s plus Rosenbrock’s Function
F10 Rotated Griewank’s Function F20 Expanded Scaffer’s F6 Function
F21–F28 Composition Function
than Variant-oppo, further indicating that Variant-oppo is not an
appropriate choice. In principle, Variant-random has 50% proba-
bility in using the same strategy in each adaptive generations as
EaDE, while Variant-oppo uses exactly the opposite strategy. This
explains the difference in performance: Variant-oppo is worse
than Variant-random and Variant-random is worse than EaDE.

(3) EaDE without trial-and-error is significantly better than
ariant-TAE with trial-and-error in 42 (= 2+13+13+14) cases

and worse in 10 (= 2+2+2+4) cases. In Section 1, we claimed
that ‘‘it is still a challenge task to remedy the drawbacks, i.e. stuck
in local minima by an exploitative strategy or over-encouraging
exploration by an explorative strategy.’’. When introducing a new
strategy, it could bring advantages when solving some problems,
however, it may also introduce weaknesses in other kinds of
problems. To demonstrate this, we consider two 30-D functions,
F13 and F22. Table 7 collects the results of the compared al-
gorithms on these functions. As seen from Table 7, among the
three strategies, SCSS-L-CIPDE_GD0.9 and SCSS-L-SHADE_GD0.1
have an advantage on only one of the two functions. Variant-
TAE employs the three strategies to try and determine the best
one to use in adaptive generations. For F13, it performs better
than all the strategies, meaning that Variant-TAE could adapt to
appropriate strategies on this function. While for EaDE, it not only
performs better than the baselines but also outperforms Variant-
TAE. For F22, Variant-TAE could not eliminate the disadvantage
of involving SCSS-L-CIPDE_GD0.9 and as a result, it loses to SCSS-
L-SHADE_GD0.1 although it performs better than the other two
strategies. While for EaDE, it overcomes the drawback of SCSS-L-
CIPDE_GD0.9. This can be explained by the fact that EaDE employs
SCSS-L-CIPDE_GD0.9 only when it is needed while Variant-TAE
includes it in the trial-and-error process.

4.2. Effectiveness of the Ea scheme: Comparison with three compo-
nents

Further, EaDE is compared with three components, i.e. SCSS-
L-CIPDE_GD0.9, SCSS-L-SHADE_GD0.1 and SCSS-L-SHADE_GD0.5
on 10-D, 30-D, 50-D and 100-D functions. The experimental re-
sults are presented in Table S2 in the supplemental file and
summarized in Table 8.

As seen from Table 8, compared with SCSS-L-SHADE_GD0.5,
EaDE is significantly better on most of the functions, winning in
42 (=8+12+12+10) and losing in 4 (=0+0+1+3) cases. This indi-
cates that the proposed Ea scheme is effective in adjusting the
exploitation and exploration capabilities of SCSS-L-SHADE_GD0.5,
leading to a much better performance. Compared with the other
8

Table 6
Comparison results of EaDE with the variants on 10-D, 30-D, 50-D and 100-D
CEC2013 benchmark set.

EaDE vs. Variant-oppo Variant-random Variant-TAE

10-D
win 6 2 2
tie 21 26 24
lose 1 0 2

30-D
win 11 6 13
tie 17 22 13
lose 0 0 2

50-D
win 13 7 13
tie 15 21 13
lose 0 0 2

100-D
win 11 7 14
tie 17 21 10
lose 0 0 4

two strategies, EaDE also performs better. Specifically, SCSS-L-
CIPDE_GD0.9 outperforms EaDE on F18 in both 30-D and 50-
D cases. In most other cases, it is worse than EaDE. SCSS-L-
SHADE_GD0.1 performs better than EaDE in 50-D F16 while on
the rest functions, it is worse than or similar to EaDE.

To investigate the usages of strategies, the trajectory of the
employed strategies at different adaptive generations intervals
on 30-D F13 and F22 is shown in Fig. 8. As seen from Ta-
ble 7, SCSS-L-CIPDE_GD0.9 is better than SCSS-L-SHADE_GD0.1
when solving F13. Interestingly, in EaDE, SCSS-L-CIPDE_GD0.9
is not always used for this function and consequently, EaDE
could outperform SCSS-L-CIPDE_GD0.9. For F22, Table 7 shows
that SCSS-L-SHADE_GD0.1 is a better choice compared to SCSS-L-
CIPDE_GD0.9. In EaDE, SCSS-L-SHADE_GD0.1 is selected in most
of the adaptive generations. This may explain the result that
EaDE is competitive to SCSS-L-SHADE_GD0.1 while outperform-
ing SCSS-L-CIPDE_GD0.9.

In conclusion, EaDE could effectively adapt to appropriate
strategies. It not only outperforms SCSS-L-SHADE_GD0.5 but also
the other two strategies in most of the cases.

4.3. Effectiveness of the Ea scheme: Comparison with other adapta-
tion methods

As illustrated in Section 2.2 and Fig. 1, differences between
the Ea scheme and previous methods can be clearly observed.
It would also be interesting to compare their performance. To
this end, adaptation methods proposed in SaDE [9] and SaM-
JADE [10] are respectively applied to the three strategies, i.e.

SCSS-L-CIPDE_GD0.9, SCSS-L-SHADE_GD0.1 and SCSS-L-SHADE_

S.X. Zhang, W.S. Chan, K.S. Tang et al. Applied Soft Computing 107 (2021) 107494

G
S

m
t
F
V
1
F
I
E
(
F
o
B

Table 7
Experiment results on 30-D F13 and F22.
Fig. 8. Usages of strategies at different adaptive generations on 30-D F13 and F22.
D0.5. The resultant algorithms, named Variant-Sa and Variant-
aM are compared with EaDE.
Experimental results are presented in Table S3 in the supple-

ental file. From the results summarized in Table 9, it is seen
hat EaDE performs better than both Variant-Sa and Variant-SaM.
or instance, with respect to the 30-D case, EaDE outperforms
ariant-Sa and Variant-SaM in 6 (F3, F8, F14, F16, F17, F22),
6 cases (F2, F3, F6, F7, F10, F11, F13, F14, F16, F17, F22, F24–
28) and underperformed in 1 (F20), 1 case (F9) respectively.
n the 50-D case, compared with Variant-Sa and Variant-SaM,
aDE is better in 10 (F2, F7, F8, F14, F16, F17, F19–F22), 18 cases
F2, F3, F7, F8, F10–F17, F21, F22, F24–F27) and worse in 3 (F9,
23, F28) and 5 cases (F6, F9, F19, F23, F28) respectively. It is
bserved that on F16 (Rotated Katsuura Function), F17 (Lunacek
i_Rastrigin Function) and F22 (Composition Function), EaDE is
9

superior or comparable in all the 10-D, 30-D, 50-D and 100-D
cases while there is no function in which EaDE consistently loses
to Variant-Sa and Variant-SaM.

To have an in-depth insight into the working processes of the
adaptation methods, the percentage of strategies used on 10-D,
30-D, 50-D and 100-D F13, F16 and F22 is shown in Fig. 9.

As seen from Fig. 9:
(1) overall, the three adaptation methods exhibit different

patterns with different percentages of strategies;
(2) on the same function, each method shows a similar pattern

of percentages of strategies on different dimensionalities;
(3) on different functions, EaDE exhibits different patterns and

is more significant than the other two methods. For both Variant-
Sa and Variant-SaM, the percentage of SCSS-L-CIPDE_GD0.9 is

S.X. Zhang, W.S. Chan, K.S. Tang et al. Applied Soft Computing 107 (2021) 107494

T
C
C

a
C
[
1
s

S
n

D
e
L
r
j
m
H
c
S
o
L
a

1

(
(
(

able 8
omparison results of EaDE with the components on 10-D, 30-D, 50-D and 100-D
EC2013 benchmark set.

EaDE
vs.

SCSS-L-
CIPDE_
GD0.9

SCSS-L-
SHADE_
GD0.1

SCSS-L-
SHADE_
GD0.5

10-D
win 5 7 8
tie 19 21 20
lose 4 0 0

30-D
win 18 10 12
tie 9 18 16
lose 1 0 0

50-D
win 18 9 12
tie 5 18 15
lose 5 1 1

100-D
win 18 10 10
tie 7 16 15
lose 3 2 3

Table 9
Comparison results of different adaptation methods on 10-D, 30-D, 50-D and
100-D CEC2013 benchmark set.

EaDE
vs.

Variant-Sa Variant-SaM

10-D
win 5 6
tie 20 20
lose 3 2

30-D
win 6 16
tie 21 11
lose 1 1

50-D
win 10 18
tie 15 5
lose 3 5

100-D
win 10 16
tie 12 9
lose 6 3

larger than SCSS-L-SHADE_GD0.1 on all the three considered
functions. However, for EaDE, it is not the case on F16.

4.4. Performance of EaDE: Comparison with state-of-the-art evolu-
tionary algorithms (EAs) and swarm intelligence-based algorithms
(SIs)

4.4.1. Comparison with state-of-the-art DE algorithms
To demonstrate the performance of EaDE, eight state-of-the-

rt DE algorithms are considered as baselines, namely SaDE [9],
oDE [15], MPEDE [11], CIPDE [31], jDE [34], JADE [35], L-SHADE
30] and jSO [36]. Tables S4-S7 present the detailed results for
0-D, 30-D, 50-D and 100-D cases, respectively. From the results
ummarized in Table 10, the followings can be observed:
(1) EaDE performs better than three multi-strategy DEs, i.e.

aDE, CoDE and MPEDE. For instance, in 30-D case, the ‘‘win/lose’’
umber is ‘‘25/1’’, ‘‘20/1’’ and ‘‘22/1’’.
(2) EaDE performs better than the rest five single-strategy

Es on the majority of functions. Similarly, take 30-D case as an
xample, the ‘‘win/lose’’ metric compared with CIPDE, jDE, JADE,
-SHADE and jSO is ‘‘17/2’’, ‘‘21/2’’, ‘‘20/1’’, ‘‘17/0’’ and ‘‘15/3’’
espectively. As is known, L-SHADE and jSO are state-of-the-art.
SO improves the performance of L-SHADE by fine-tuning the
utation factor F, crossover factor CR and population size NP.
owever, it is seen that without tuning these parameters, EaDE
ould still outperform them. The improvement process from L-
HADE to EaDE is L-SHADE→SCSS-L-SHADE_GD0.5→EaDE. The
bservation that EaDE loses on few cases when compared with
-SHADE indicates that techniques in improvement process could
ppropriately deal with different kinds of functions in most cases.
10
(3) With respect to the function types, Table 10 shows that
EaDE is consistently more suitable for solving unimodal, basic
multimodal and composition functions than the other competi-
tors. With respect to the function dimensionalities, EaDE per-
forms better in all the cases.

Table 11 reports the functions on which the DEs reached the
target error value 1.00E−08 in the 30-D case. It is found that EaDE
achieves the maximum number of 11 functions. On F12 and F13,
only EaDE reached 1.00E−08.

Tables S8–11 and 12 also collect the comparison results on the
CEC2014 [37] test suite. Similarly, it is clearly observed that EaDE
performs better, winning in 125 (= 15 + 13 + 24 + 15 + 20 +

9 + 8 + 11), 164 (= 27 + 20 + 20 + 21 + 23 + 24 + 17 + 12),
179 (= 28 + 23 + 25 + 23 + 24 + 25 + 19 + 12) and 165
= 27+ 22+ 23+ 22+ 21+ 23+ 17+ 10) cases and losing in 11
= 1+5+0+2+1+0+0+2), 13 (= 0+2+1+3+1+1+0+5), 22
= 0+5+1+3+2+2+2+7) and 32 (= 2+4+5+5+5+4+0+7)
cases in 10-D, 30-D, 50-D and 100-D respectively. Considering the
function types, it is seen from Table 12 that EaDE is superior for
solving unimodal, basic multimodal and composition functions
while jSO is more suitable for the hybrid functions.

The convergence graphs of the considered DEs on selected
CEC 2013 and CEC 2014 functions are shown in Fig. 10 and S1
respectively. For the CEC2013 functions, jSO achieved the best
result on 30-D F7, followed by EaDE. On the rest eight functions,
EaDE found the best solutions. It is seen that L-SHADE, jSO and
EaDE with the most competitive performance generally converge
slower than most of the rest DEs at the early stages. The reason
is that at these stages, their population sizes are relatively large.
Nevertheless, it could help maintain the population diversity,
which is critical for solving the complicated multi-modal func-
tions. Similar observations can also be found on the CEC2014
functions from Fig. S1.

4.4.2. Comparison with other state-of-the-art evolutionary algo-
rithms and swarm intelligence-based algorithms

EaDE is further compared with four other algorithms, in-
cluding the continuous Non-revisiting Genetic Algorithm (cN-
rGA) [38], the Dynamic Multi-swarm Differential Learning Par-
ticle Swarm Optimizer (DMSDL-PSO) [39] and two CMA-ES [40]
variants, namely Increasing Population size-based CMA-ES (IPOP-
CMA-ES) [41] and Hybrid Sampling Evolution Strategy (HS-ES)
[42].

The results on CEC2013 and CEC2014 benchmark suites are
presented in Tables S12 and S13 and summarized in Tables 13
and 14, respectively. From these tables:

(1) EaDE performs better than cNrGA and DMSDL-PSO on all
considered dimensionalities. For example, in the 30-D case, the
‘‘win/lose’’ metric is ‘‘26/0’’ and ‘‘21/2’’ on CEC2013 and ‘‘29/1’’
and ‘‘22/1’’ on CEC2014;

(2) The two CMA-ES variants have unique advantages in solv-
ing some functions, e.g. F9, F15, F23, F24 and F27 from CEC2013
due to their fast convergence. On most of the rest CEC2013
functions, they perform worse than or similar to EaDE. Consid-
ering the dimensionality, EaDE outperforms IPOP-CMA-ES on all
the cases. While compared with HS-ES, EaDE has advantages in
solving the 10-D, 30-D and 50-D CEC2013 functions. In the 100-D
case, HS-ES performs slightly better. Similar observations can also
be found from the results on CEC2014 functions. Overall, EaDE is
competitive against these two state-of-the-art CMA-ESs.

4.5. Comparison on real-world problems

The performance of EaDE is further demonstrated by com-
parison with five state-of-the-art competitors, including cNrGA,
DMSDL-PSO, L-SHADE, jSO and HS-ES on eight CEC2011 [43] real-
world problems (RWP). Descriptions of the problems are given in

S.X. Zhang, W.S. Chan, K.S. Tang et al. Applied Soft Computing 107 (2021) 107494

Fig. 9. Percentage of the strategies used in each method on 10-D, 30-D, 50-D and 100-D F13, F16 and F22.

Fig. 10. Convergence plots of the considered DE algorithms on selected CEC2013 functions in the median run.

11

S.X. Zhang, W.S. Chan, K.S. Tang et al. Applied Soft Computing 107 (2021) 107494

T
C

able 10
omparison results of EaDE with state-of-the art EAs on 10-D, 30-D, 50-D and 100-D CEC2013 benchmark set.

win/tie/lose SaDE CoDE MPEDE CIPDE jDE JADE L-SHADE jSO

10-D
Unimodal Functions 3/2/0 1/4/0 1/4/0 0/5/0 2/3/0 1/4/0 0/5/0 0/4/1

Basic Multimodal Functions 13/2/0 9/4/2 14/1/0 8/7/0 12/2/1 12/3/0 8/6/1 7/6/2

Composition Functions 4/3/1 5/2/1 5/2/1 1/6/1 4/3/1 4/3/1 2/5/1 1/5/2

Total 20/7/1 15/10/3 20/7/1 9/18/1 18/8/2 17/10/1 10/16/2 8/15/5

30-D

Unimodal Functions 3/2/0 3/2/0 3/2/0 3/2/0 3/2/0 3/2/0 0/5/0 0/4/1

Basic Multimodal Functions 14/0/1 11/3/1 12/2/1 8/5/2 12/1/2 11/3/1 12/3/0 9/4/2

Composition Functions 8/0/0 6/2/0 7/1/0 6/2/0 6/2/0 6/2/0 5/3/0 6/2/0

Total 25/2/1 20/7/1 22/5/1 17/9/2 21/5/2 20/7/1 17/11/0 15/10/3

50-D

Unimodal Functions 3/2/0 3/2/0 3/2/0 3/2/0 3/2/0 3/2/0 2/3/0 2/2/1

Basic Multimodal Functions 14/0/1 13/1/1 13/1/1 11/1/3 12/1/2 12/1/2 13/2/0 10/4/1

Composition Functions 8/0/0 6/1/1 7/1/0 8/0/0 6/2/0 7/0/1 6/2/0 3/3/2

Total 25/2/1 22/4/2 23/4/1 22/3/3 21/5/2 22/3/3 21/7/0 15/9/4

100-D

Unimodal Functions 3/2/0 3/2/0 3/2/0 3/2/0 3/2/0 3/2/0 1/3/1 2/2/1

Basic Multimodal Functions 13/0/2 11/2/2 8/3/4 8/2/5 9/2/4 10/1/4 9/6/0 10/3/2

Composition Functions 7/1/0 8/0/0 6/1/1 6/1/1 8/0/0 6/1/1 5/3/0 4/0/4

Total 23/3/2 22/4/2 17/6/5 17/5/6 20/4/4 19/4/5 15/12/1 16/5/7
Table 11
Functions on which an algorithm reached the target error value 1.00E-08 in at least one run of 51 trials in the 30-D case.

SaDE CoDE MPEDE CIPDE jDE JADE L-SHADE jSO EaDE

Fun
No.

F1, F5,
F11

F1, F5,
F10,
F11

F1–F6,
F10, F11

F1, F3, F5,
F6, F11

F1, F5,
F10, F11,
F14

F1, F3, F5,
F6, F11, F14

F1–F6, F10,
F11, F14

F1–F6,
F10, F11

F1–F6,
F10–F14

Total 3 4 8 5 5 6 9 8 11
Table 12
Comparison results of EaDE with state-of-the art EAs on 10-D, 30-D, 50-D and 100-D CEC2014 benchmark set.

win/tie/lose SaDE CoDE MPEDE CIPDE jDE JADE L-SHADE jSO

10-D

Unimodal Functions 0/3/0 0/3/0 0/3/0 0/3/0 0/3/0 0/3/0 0/3/0 0/3/0

Basic Multimodal Functions 9/3/1 9/3/1 12/1/0 6/6/1 9/3/1 10/3/0 6/7/0 6/6/1

Hybrid Functions 2/4/0 0/3/3 6/0/0 3/2/1 5/1/0 4/2/0 0/6/0 2/3/1

Composition Functions 4/4/0 4/3/1 6/2/0 6/2/0 6/2/0 5/3/0 2/6/0 3/5/0

Total 15/14/1 13/12/5 24/6/0 15/13/2 20/9/1 19/11/0 8/22/0 11/17/2

30-D

Unimodal Functions 1/2/0 1/2/0 0/3/0 2/1/0 1/2/0 2/1/0 0/3/0 0/3/0

Basic Multimodal Functions 13/0/0 9/3/1 10/3/0 7/4/2 10/3/0 10/3/0 8/5/0 9/4/0

Hybrid Functions 6/0/0 5/1/0 6/0/0 6/0/0 6/0/0 6/0/0 5/1/0 1/2/3

Composition Functions 7/1/0 5/2/1 4/3/1 6/1/1 6/1/1 6/1/1 4/4/0 2/4/2

Total 27/3/0 20/8/2 20/9/1 21/6/3 23/6/1 24/5/1 17/13/0 12/13/5

50-D

Unimodal Functions 3/0/0 3/0/0 2/1/0 2/1/0 2/1/0 2/1/0 1/2/0 1/2/0

Basic Multimodal Functions 12/1/0 9/2/2 11/2/0 9/1/3 10/2/1 10/1/2 10/3/0 10/3/0

Hybrid Functions 6/0/0 5/0/1 5/0/1 6/0/0 6/0/0 6/0/0 4/1/1 0/2/4

Composition Functions 7/1/0 6/0/2 7/1/0 6/2/0 6/1/1 7/1/0 4/3/1 1/4/3

Total 28/2/0 23/2/5 25/4/1 23/4/3 24/4/2 25/3/2 19/9/2 12/11/7

100-D

Unimodal Functions 3/0/0 3/0/0 2/1/0 2/1/0 3/0/0 2/1/0 1/2/0 0/3/0

Basic Multimodal Functions 11/1/1 7/3/3 8/1/4 6/2/5 8/2/3 8/1/4 8/5/0 8/4/1

Hybrid Functions 5/0/1 6/0/0 6/0/0 6/0/0 5/1/0 6/0/0 4/2/0 1/2/3

Composition Functions 8/0/0 6/1/1 7/0/1 8/0/0 5/1/2 7/1/0 4/4/0 1/4/3

Total 27/1/2 22/4/4 23/2/5 22/3/5 21/4/5 23/3/4 17/13/0 10/13/7
=

Table 15. Thirty trials were performed for each problem with each
trial assigned 10000 × D function evaluations. Note that our PC
could not afford the memory requirement of cNrGA for solving
RWP5 and its result for this problem is not available.

From Table 16, it is clear that EaDE exhibits the best perfor-
mance among the compared algorithms. The ‘‘win/lose’’ metric is
‘‘7/0’’, ‘‘5/1’’, ‘‘5/0’’, ‘‘5/1’’ and ‘‘8/0’’ when compared with cNrGA,
DMSDL-PSO, L-SHADE, jSO and HS-ES, respectively. The advan-
tage is consistent with what have been observed previously on
the CEC2013 and CEC2014 benchmarks. Meanwhile, considering
 o

12
that these problems are with a wide range of dimensionalities,
the scalability of EaDE is confirmed.

4.6. More discussions on EaDE

4.6.1. Performance sensitivity to LEN and K
To investigate the performance sensitivity to parameters LEN

and K, 25 combinations with LEN = {10, 30, 50, 70, 90} and K
{1, 2, 3, 4, 5} are considered. The overall performance ranking

f each combination on 30-D functions by Friedman’s test [33] is

S.X. Zhang, W.S. Chan, K.S. Tang et al. Applied Soft Computing 107 (2021) 107494

T
C
1

F
t
s
a
o
t
t
d

4

a
S
S
a
t
s
s
c
w
w
c
t
a

5

e
p

able 13
omparison results of EaDE with other EAs and SIs on 10-D, 30-D, 50-D and
00-D CEC2013 benchmark set.

EaDE
vs.

cNrGA DMSDL
-PSO

IPOP-
CMA-ES

HS-ES

10-D
win 28 19 16 13
tie 0 5 8 12
lose 0 4 4 3

30-D
win 26 21 12 15
tie 2 5 9 6
lose 0 2 7 7

50-D
win 26 21 14 16
tie 1 4 6 3
lose 1 3 8 9

100-D
win 19 16 14 11
tie 7 5 6 3
lose 2 7 8 14

plotted in Fig. 11. It can be observed that the performance of large
LEN and K values, e.g. 90 and 5 is worse than other combinations.
or other settings, it is not very sensitive. Table 17 further shows
he single-problem performance comparison with the standard
etting, i.e. [30, 2]. As seen again, for large [LEN, K] values, such
s [70,4], [70, 5], [90, 4] and [90, 5], standard setting tends to
utperform them. The reason is that large [LEN, K] value reduces
he number of SCSS and adaptive generations and as a result,
he algorithm could not timely adjust to appropriate searching
irections.

.6.2. Number of strategies
In Section 3.1, the guideline for studying the exploitation

nd exploration capabilities (EEC) of strategies was given. In
ection 3.2, three constructed strategies, SCSS-L-SHADE_GD0.5,
CSS-L-SHADE_GD0.1 and SCSS-L-CIPDE_GD0.9 with different
mounts of EEC were organized following the Ea scheme. Al-
hough only three strategies were considered in the current
tudy, the proposed method can also be extended for N (N > 3)
trategies. Specifically, in SCSS generations, the entire population
an be divided into N − 1 subpopulations according to fitness
ith each subpopulation mapped to one strategy. Nevertheless,
hen there are too many strategies, the system may become
omplex and some inefficient strategies may waste computa-
ional resources [5]. Further investigations would be considered
s future works.

. Conclusion

In this paper, a new strategy adaptation method with explicit
xploitation and exploration controls, i.e. Ea scheme has been

roposed. Based on the Ea scheme, a new DE named EaDE has

13
Fig. 11. Performance ranking of different combinations of LEN and K. The
smaller ranking value, the better.

been constructed. In EaDE, the evolution process is divided into
several SCSS generations and adaptive generations. In SCSS gener-
ations, a balanced strategy is employed to detect the exploitation
and exploration needs. In adaptive generations, an exploitative
strategy or an explorative strategy is adaptively used to meet
the needs. To demonstrate the contribution of the Ea scheme, we
have compared it with three variants, three components as well
as two other popular adaptation methods. We have also further
shown the performance of EaDE by comparison with state-of-the
art evolutionary algorithms (EAs) and swarm intelligence-based
algorithms (SIs) on CEC2013 and CEC2014 test suites as well as
on eight real-world problems. Experimental results show that: (1)
Ea scheme significantly outperforms the variants, the components
and other adaptation methods; and (2) EaDE performs better than
state-of-the-art optimization algorithms.

Although further improvements have been achieved with the
Ea scheme, we have also noticed that it could not outperform on
all the problems. Recognizing that seeking for a best configuration
from 3L combinations (with 3 strategies and L generations) is
extremely expensive and impractical, we believe the proposed
method is a reasonable alternative.

For further study, the proposed Ea scheme might be gen-
eralized for other strategies. A potential direction will be to
investigate the possibility to extend to other EAs [44] and SIs [45]
as well as its application in the hybrids of different EAs and SIs
with different exploitation and exploration features.

The MATLAB code of EaDE is available at https://zsxhomepage.

github.io/.
Table 14
Comparison results of EaDE with other EAs and SIs on 10-D, 30-D, 50-D and 100-D CEC2014 benchmark set.

EaDE
vs.

cNrGA DMSDL
-PSO

IPOP-
CMA-ES

HS-ES

10-D
win 30 25 24 16
tie 0 3 4 6
lose 0 2 2 8

30-D
win 29 22 23 16
tie 0 7 6 7
lose 1 1 1 7

50-D
win 27 21 23 10
tie 2 4 4 7
lose 1 5 3 13

100-D
win 26 18 22 12
tie 1 2 4 2
lose 3 10 4 16

https://zsxhomepage.github.io/
https://zsxhomepage.github.io/
https://zsxhomepage.github.io/

S.X. Zhang, W.S. Chan, K.S. Tang et al. Applied Soft Computing 107 (2021) 107494

y
W
-
r

D

c
t

Table 15
Descriptions of the considered CEC2011 problems.
No. Problem D

RWP1 Parameter Estimation for Frequency Modulated (FM) Sound Waves 6
RWP2 Lennard-Jones Potential Problem 30
RWP3 Tersoff Potential for model Si (B) 30
RWP4 Tersoff Potential for model Si (C) 30
RWP5 DED instance 2 216
RWP6 Hydrothermal Scheduling instance 1 96
RWP7 Messenger: Spacecraft Trajectory Optimization Problem 26
RWP8 Cassini 2: Spacecraft Trajectory Optimization Problem 22
Table 16
Performance comparisons of EaDE with other competitors on the eight CEC2011 real-world problems.

N/A: not available.
Table 17
Comparison results of standard EaDE with other parameter settings [LEN, K] on 30-D CEC2013 benchmark set.
CRediT authorship contribution statement

Sheng Xin Zhang: Conceptualization, Validation, Data anal-
sis, Writing - original draft. Wing Shing Chan: Supervision,
riting - review & editing. Kit Sang Tang: Supervision, Writing
review & editing. Shao Yong Zheng: Supervision, Writing -

eview & editing.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.
14
Acknowledgments

The work was supported in part by City University of Hong
Kong under a SRG Grant (Project no: 7004710) and in part by the
National Natural Science Foundation of China (No. 61671485).

Appendix A. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.asoc.2021.107494.

https://doi.org/10.1016/j.asoc.2021.107494

S.X. Zhang, W.S. Chan, K.S. Tang et al. Applied Soft Computing 107 (2021) 107494

R
eferences

[1] M. Črepinšek, S.-H. Liu, M. Mernik, Exploration and exploitation in evo-
lutionary algorithms: a survey, ACM Comput. Surv. 45 (3) (2013) 1–33,
35.

[2] M.G. Epitropakis, D.K. Tasoulis, N.G. Pavlidis, V.P. Plagianakos, M.N. Vra-
hatis, Enhancing differential evolution utilizing proximity-based mutation
operators, IEEE Trans. Evol. Comput. 15 (2011) 99–119.

[3] M. Yang, C. Li, Z. Cai, J. Guan, Differential evolution with auto-enhanced
population diversity, IEEE Trans. Cybern. 45 (2015) 302–315.

[4] J. Chacón Castillo, C. Segura, Differential evolution with enhanced diversity
maintenance, Optim. Lett. (2019) http://dx.doi.org/10.1007/s11590-019-
01454-5.

[5] G. Wu, R. Mallipeddi, P.N. Suganthan, Ensemble strategies for population-
based optimization algorithms – A survey, Swarm Evol. Comput. 44 (2019)
695–711.

[6] R. Storn, K. Price, Differential Evolution–a Simple and Efficient Adaptive
Scheme for Global Optimization over Continuous Spaces, Berkeley, CA,
Tech. Rep. 1995, tech. Rep. TR-95-012., 1995.

[7] S. Das, S.M. Sankha, P.N. Suganthan, Recent advances in differential
evolution – An updated survey, Swarm Evol. Comput. 27 (2016) 1–30.

[8] R.D. Al-Dabbagh, F. Neri, N. Idris, M.S. Baba, Algorithm design issues
in adaptive differential evolution: review and taxonomy, Swarm Evol.
Comput. 43 (2018) 284–311.

[9] A.K. Qin, V.L. Huang, P.N. Suganthan, Differential evolution algorithm with
strategy adaptation for global numerical optimization, IEEE Trans. Evol.
Comput. (2009) 398–417.

[10] W. Gong, Z. Cai, C.X. Ling, H. Li, Enhanced differential evolution with
adaptive strategies for numerical optimization, IEEE Trans. Syst Man
Cybern B 41 (2010) 397–413.

[11] G. Wu, R. Mallipeddi, P.N. Suganthan, R. Wang, H. Chen, Differential
evolution with multi-population based ensemble of mutation strategies,
Inform. Sci. 329 (2016) 329–345.

[12] K. Li, Á. Fialho, S. Kwong, Q. Zhang, Adaptive operator selection with ban-
dits for a multiobjective evolutionary algorithm based on decomposition,
IEEE Trans. Evol. Comput. 18 (2013) 114–130.

[13] K. Li, Á. Fialho, S. Kwong, Multi-objective differential evolution with
adaptive control of parameters and operators, in: C.C. Coello (Ed.), Learning
and Intelligent Optimization, vol. 6683, Springer Berlin Heidelberg, 2011,
pp. 473–487.

[14] R. Mallipeddi, P.N. Suganthan, Ensemble of constraint handling techniques,
IEEE Trans. Evol. Comput. 14 (2010) 561–579.

[15] Y. Wang, Z. Cai, Q. Zhang, Differential evolution with composite trial vector
generation strategies and control parameters, IEEE Trans. Evol. Comput. 15
(2011) 55–66.

[16] W. Gong, A. Zhou, Z. Cai, A multi-operator search strategy based on cheap
surrogate models for evolutionary optimization, IEEE Trans. Evol. Comput.
19 (2015) 746–758.

[17] L. Cui, G. Li, Q. Lin, J. Chen, N. Lu, Adaptive differential evolution algorithm
with novel mutation strategies in multiple sub-populations, Comput. Oper.
Res. 67 (2016) 155–173.

[18] X.G. Zhou, G.J. Zhang, Differential evolution with underestimation-based
multimutation strategy, IEEE Trans. Cybern. 49 (2019) 1353–1364.

[19] S.X. Zhang, W.S. Chan, Z.K. Peng, S.Y. Zheng, K.S. Tang, Selective-candidate
framework with similarity selection rule for evolutionary optimization,
Swarm Evol. Comput. 56 (2020) 100696.

[20] S. Das, A. Abraham, U.K. Chakraborty, A. Konar, Differential evolution using
a neighborhood-based mutation operator, IEEE Trans. Evol. Comput. 13
(2009) 526–553.

[21] W. Gong, Á. Fialho, Z. Cai, H. Li, Adaptive strategy selection in differential
evolution for numerical optimization: an empirical study, Inform. Sci. 181
(2011) 5364–5386.

[22] R. Mallipeddi, P.N. Suganthan, Q. Pan, M. Tasgetiren, Differential evolution
algorithm with ensemble of parameters and mutation strategies, Appl. Soft
Comput. 11 (2011) 1679–1696.

[23] Q. Fan, X. Yan, Self-adaptive differential evolution algorithm with zoning
evolution of control parameters and adaptive mutation strategies, IEEE
Trans. Cybern. 46 (2016) 219–232.
15
[24] X. Zhou, G. Zhang, Abstract convex underestimation assisted multistage
differential evolution, IEEE Trans. Cybern. 47 (2017) 2730–2741.

[25] S.X. Zhang, S.Y. Zheng, L.M. Zheng, An efficient multiple variants coordi-
nation framework for differential evolution, IEEE Trans. Cybern. 47 (2017)
2780–2793.

[26] S. Gao, Y. Yu, Y. Wang, J. Wang, J. Cheng, M. Zhou, Chaotic local search-
based differential evolution algorithms for optimization, IEEE Trans. Syst.
Man Cybern. Syst. (2019) http://dx.doi.org/10.1109/TSMC.2019.2956121.

[27] G. Sun, Y. Cai, T. Wang, H. Tian, C. Wang, Y. Chen, Differential evolution
with individual-dependent topology adaptation, Inform. Sci. 450 (2018)
1–38.

[28] M. Tian, X. Gao, Differential evolution with neighborhood-based adaptive
evolution mechanism for numerical optimization, Inform. Sci. 478 (2019)
422–448.

[29] S.X. Zhang, L.M. Zheng, K.S. Tang, S.Y. Zheng, W.S. Chan, Multi-layer
competitive-cooperative framework for performance enhancement of
differential evolution, Inform. Sci. 482 (2019) 86–104.

[30] R. Tanabe, A.S. Fukunaga, Improving the search performance of shade using
linear population size reduction, in: Evolutionary Computation (CEC), 2014
IEEE Congress on, IEEE, 2014, pp. 1658–1665.

[31] L.M. Zheng, S.X. Zhang, K.S. Tang, S.Y. Zheng, Differential evolution
powered by collective information, Inform. Sci. 399 (2017) 13–29.

[32] J.J. Liang, B.Y. Qu, P.N. Suganthan, A.G. Hernández-Díaz, Problem Definitions
and Evaluation Criteria for the CEC2013 Special Session on Real-Parameter
Optimization, Comput. Intell. Lab. Zhengzhou Univ. Zhengzhou, China, and
Nanyang Technol. Univ. Singapore, Tech. Rep. 201212, 2013.

[33] J. Derrac, S. García, D. Molina, F. Herrera, A practical tutorial on the
use of nonparametric statistical tests as a methodology for comparing
evolutionary and swarm intelligence algorithms, Swarm Evol. Comput. 1
(2011) 3–18.

[34] J. Brest, S. Greiner, B. Boskovic, M. Mernik, V. Zumer, Self-adapting control
parameters in differential evolution: a comparative study on numerical
benchmark problems, IEEE Trans. Evol. Comput. 10 (2006) 646–657.

[35] J. Zhang, A.C. Sanderson, JADE: adaptive differential evolution with optional
external archive, IEEE Trans. Evol. Comput. 13 (2009) 945–958.

[36] J. Brest, M.S. Maučec, B. Bošković, Single objective real-parameter opti-
mization: algorithm jSO, in: Proc of the IEEE Congress on Evolutionary
Computation, San Sebastian, 2017, pp. 1311–1318.

[37] J.J. Liang, B.Y. Qu, P.N. Suganthan, Problem Definitions and Evaluation
Criteria for the CEC 2014 Special Session and Competition on Single Ob-
jective Real-Parameter Numerical Optimization, Computational Intelligence
Laboratory, Zhengzhou University, Zhengzhou China and Technical Report,
Nanyang Technological University, Singapore, 2013.

[38] Y. Lou, S.Y. Yuen, Non-revisiting genetic algorithm with adaptive mutation
using constant memory, Memetic Comput. 8 (2016) 189–210.

[39] Y. Chen, L. Li, H. Peng, J. Xiao, Q. Wu, Dynamic multi-swarm differen-
tial learning particle swarm optimizer, Swarm Evol. Comput. 39 (2018)
209–221.

[40] N. Hansen, A. Ostermeier, Completely derandomized self-adaptation in
evolution strategies, Evol. Comput. 9 (2001) 159–195.

[41] A. Auger, N. Hansen, A restart CMA evolution strategy with increasing pop-
ulation size, in: Proc of the IEEE Congress on Evolutionary Computation,
Sep. 2005, pp. 1769–1776.

[42] G. Zhang, Y. Shi, Hybrid sampling evolution strategy for solving single
objective bound constrained problems, in: Proc. IEEE Congr. Evol. Comput.
Rio de Janeiro, 2018, http://dx.doi.org/10.1109/CEC.2018.8477908.

[43] S. Das, P.N. Suganthan, Problem Definitions and Evaluation Criteria for
CEC 2011 Competition on Testing Evolutionary Algorithms on Real World
Optimization Problems, Technical Report, Jadavpur University, Nanyang
Technological University, 2010.

[44] J. Del Ser, E. Osaba, D. Molina, X.S. Yang, S. Salcedo-Sanz, D. Camacho,
S. Das, P.N. Suganthan, C.A.C. Coello, F. Herrera, Bio-inspired computa-
tion: Where we stand and what’s next, Swarm Evol. Comput. 48 (2019)
220–250.

[45] A. Altan, S. Karasu, Recognition of COVID-19 disease from X-ray images
by hybrid model consisting of 2D curvelet transform, chaotic salp swarm
algorithm and deep learning technique, Chaos Solitons Fractals 140 (2020)
110071.

http://refhub.elsevier.com/S1568-4946(21)00417-8/sb1
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb1
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb1
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb1
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb1
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb2
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb2
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb2
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb2
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb2
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb3
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb3
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb3
http://dx.doi.org/10.1007/s11590-019-01454-5
http://dx.doi.org/10.1007/s11590-019-01454-5
http://dx.doi.org/10.1007/s11590-019-01454-5
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb5
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb5
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb5
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb5
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb5
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb6
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb6
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb6
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb6
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb6
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb7
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb7
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb7
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb8
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb8
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb8
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb8
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb8
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb9
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb9
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb9
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb9
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb9
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb10
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb10
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb10
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb10
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb10
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb11
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb11
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb11
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb11
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb11
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb12
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb12
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb12
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb12
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb12
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb13
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb13
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb13
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb13
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb13
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb13
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb13
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb14
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb14
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb14
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb15
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb15
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb15
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb15
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb15
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb16
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb16
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb16
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb16
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb16
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb17
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb17
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb17
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb17
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb17
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb18
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb18
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb18
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb19
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb19
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb19
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb19
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb19
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb20
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb20
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb20
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb20
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb20
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb21
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb21
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb21
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb21
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb21
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb22
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb22
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb22
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb22
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb22
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb23
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb23
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb23
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb23
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb23
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb24
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb24
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb24
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb25
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb25
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb25
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb25
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb25
http://dx.doi.org/10.1109/TSMC.2019.2956121
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb27
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb27
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb27
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb27
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb27
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb28
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb28
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb28
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb28
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb28
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb29
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb29
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb29
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb29
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb29
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb30
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb30
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb30
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb30
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb30
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb31
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb31
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb31
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb32
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb32
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb32
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb32
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb32
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb32
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb32
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb33
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb33
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb33
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb33
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb33
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb33
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb33
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb34
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb34
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb34
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb34
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb34
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb35
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb35
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb35
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb37
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb37
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb37
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb37
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb37
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb37
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb37
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb37
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb37
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb38
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb38
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb38
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb39
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb39
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb39
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb39
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb39
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb40
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb40
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb40
http://dx.doi.org/10.1109/CEC.2018.8477908
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb43
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb43
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb43
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb43
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb43
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb43
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb43
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb44
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb44
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb44
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb44
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb44
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb44
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb44
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb45
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb45
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb45
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb45
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb45
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb45
http://refhub.elsevier.com/S1568-4946(21)00417-8/sb45

	Adaptive strategy in differential evolution via explicit exploitation and exploration controls
	Introduction
	Backgrounds
	Strategy adaptation in DE
	Novelty of the Ea scheme
	Detection of exploitation/exploration need: SCSS method

	EaDE (Explicitly adaptive DE)
	Exploitation and exploration capabilities of the strategies in EaDE
	Explicit adaptation (Ea scheme)
	Detection of evolution difficulty
	The complete EaDE algorithm

	Simulation
	Effectiveness of the Ea scheme: Comparison with three variants
	Effectiveness of the Ea scheme: Comparison with three components
	Effectiveness of the Ea scheme: Comparison with other adaptation methods
	Performance of EaDE: Comparison with state-of-the-art evolutionary algorithms (EAs) and swarm intelligence-based algorithms (SIs)
	Comparison with state-of-the-art DE algorithms
	Comparison with other state-of-the-art evolutionary algorithms and swarm intelligence-based algorithms

	Comparison on real-world problems
	More discussions on EaDE
	Performance sensitivity to LEN and K
	Number of strategies

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A. Supplementary data
	References

