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a b s t r a c t 

Differential evolution (DE) is recognized as one of the most powerful optimizers in the 

evolutionary algorithm (EA) family. Many DE variants were proposed in recent years, but 

significant differences in performances between them are hardly observed. Therefore, this 

paper suggests a multi-layer competitive-cooperative (MLCC) framework to facilitate the 

competition and cooperation of multiple DEs, which in turns, achieve a significant perfor- 

mance improvement. Unlike other multi-method strategies which adopt a multi-population 

based structure, with individuals only evolving in their corresponding subpopulations, 

MLCC implements a parallel structure with the entire population simultaneously moni- 

tored by multiple DEs assigned to their corresponding layers. An individual can store, uti- 

lize and update its evolution information in different layers based on an individual prefer- 

ence based layer selecting (IPLS) mechanism and a computational resource allocation bias 

(RAB) mechanism. In IPLS, individuals connect to only one favorite layer. While in RAB, 

high-quality solutions are evolved by considering all the layers. Thus DEs associated in the 

layers work in a competitive and cooperative manner. The proposed MLCC framework has 

been implemented on several highly competitive DEs. Experimental studies show that the 

MLCC variants significantly outperform the baseline DEs as well as several state-of-the-art 

and up-to-date DEs on CEC benchmark functions. 

© 2018 Published by Elsevier Inc. 

 

 

 

 

 

 

1. Introduction 

Differential evolution (DE) [30] is well known for its efficiency in solving various continuous optimization problems

[ 7 , 8 , 24 ]. DE has been widely explored over the past two decades, and consequently many advanced DE variants have been

proposed. Recently, several competitive DEs, including CoBiDE (DE with covariance matrix learning and bimodal distribu-

tion parameter setting) [39] , SHADE (DE with success-history based parameter adaptation) [33] , MPEDE (DE with multi-

population ensemble) [44] and IDE (DE with individual-dependent mechanism) [36] have been designed. However, when

compared with each other, there were not many differences in their performances. It still remains a challenge to construct

a DE algorithm that can significantly outperform all of these up-to-date DEs. 
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On the other hand, since the proposal of the AMALGAM-SO (A multi-algorithm genetically adaptive method for single

objective optimization) [37] algorithm, research [ 1 , 13 , 25 , 28 , 31 , 44 , 50 ] on combining multiple operators or multiple evolu-

tionary algorithms (EAs) have been a hot topic in the EA community. These methods usually employ a multi-population

structure, which divides the entire population into several subpopulations. However, when the population size of each con-

stituent optimizer is large, the convergence of the hybrid algorithm may decrease significantly. The clustering of individuals

would slow down and function evaluations more likely spent on random explorative moves [26] . Moreover, it may be dif-

ficult to incorporate some complex variants and there is still uncertainty on how to take advantage of these optimizers

simultaneously. 

Recognizing the distinct merits of different DE designs and the difficulties in managing multiple DEs under a multi-

population structure, we aim to propose a flexible framework that is able to combine multiple DEs efficiently and achieve

a significant improvement of performance. A multi-layer competitive-cooperative (MLCC) framework is hence developed in

this paper. In MLCC, a single population is maintained, while, by deploying individuals to operational layers, it facilitates

competition and cooperation amongst the employed DEs. Features of MLCC are highlighted as follows: 

(1) Different from existing multi-population based hybrid methods, MLCC introduces a parallel multi-layer structure with

each layer associated with one adaptive DE optimizer. This parallel structure is expected to (i) eliminate the significant

increase in population size as observed in existing multi-population based structures; and (ii) preserve the original

designs of the constituent optimizers, providing high flexibility to incorporate complex DE variants. 

(2) Competition in MLCC is designed to efficiently distribute computation resources. This is accomplished by the indi-

vidual preference-based layer selecting (IPLS) mechanism, that allows each individual to connect to its favorite layer.

IPLS differs from existing methods [ 21 , 25 , 28 , 37 , 42–44 ] in three aspects: (i) each layer in MLCC has access to the en-

tire population. Although some individuals (i.e. the target vectors) may be processed by a specific layer at some time,

individuals for mutation can be selected from the entire population; (ii) each individual can store, use and update its

evolution information in multiple layers. This facilitates the incorporation of self-adaptive DEs [ 4 , 22 , 39 ], which have

to evolve individual specified strategies or parameters; and (iii) the entire population is monitored by multiple layers

to help each optimizer make decisions based on the current evolution stage. 

(3) Cooperation in MLCC takes advantages of all the constituent optimizers simultaneously, to allow them to collaborate

closely. This is realized using the resource allocation bias (RAB) mechanism. In RAB, some high-quality solutions are

allowed to generate multiple trial vectors by using all the layers while the inferior solutions only produce one trial

vector. RAB is designed based on the following considerations: (i) simultaneous consideration of all the layers for

superior individuals can provide multiple directions for evolution; (ii) the layers in MLCC usually have complementary

properties. Evolving elitism solutions by these layers simultaneously is less likely to suffer from a local optimum but

instead enhances the exploitation capability of the algorithm; (iii) different from canonical DE [30] and existing DEs,

RAB allocates more resources to superior solutions. As a result, the evolution can put more effort s onto promising

searching directions, which may be beneficial to the entire population later; and (iv) the same as canonical DE, inferior

solutions in RAB can still generate their offspring. This ensures that the chances of inferior solutions can compete with

the superior ones thus keeping the exploratory capability of DE. 

The effectiveness of the proposed MLCC framework and its components, i.e. IPLS and RAB, have been verified through

extensive experiments conducted using 30 benchmark functions derived from the 2014 IEEE Congress on Evolutionary Com-

putation (IEEE CEC2014) [18] . Numerical results show that MLCC significantly improves the performance of the baseline DEs.

Moreover, the resulting MLCC variant significantly outperforms state-of-the-art and up-to-date DEs. 

The remainder of this paper is organized as follows: Section 2 briefly reviews the related works. Section 3 describes

the proposed MLCC framework and its implementation details. Section 4 presents the experiments and discussions. Finally,

Section 5 concludes this paper. 

2. Background and related works 

2.1. Basics of DE 

DE is a population-based stochastic search method for continuous real parameter optimization prob-

lems. Given a D -dimensional minimization problem, DE begins with a population of NP individuals, P 0 =
{ � x i, 0 = ( x i, 1 , 0 , x i, 2 , 0 , . . . , x i,D, 0 ) , i ∈ � ≡ { 1 , 2 , . . . , NP } } randomly sampled from the searching space. Afterwards, at each

generation G , three operations: mutation, crossover and selection are performed. They are briefly introduced in the

following. 

Mutation: In mutation, a mutant vector � v i,G corresponding to each target vector � x i,G is generated by combining a base

vector with one or more difference vectors. Frequently used mutation strategies include: 

1) DE/rand/1 

�
 v i,G = 

�
 x r 1 ,G + F ( � x r 2 ,G − �

 x r 3 ,G ) (1)

2) DE/best/1 

� � � �

 v i,G =  x best,G + F (  x r 1 ,G −  x r 2 ,G ) (2) 
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3) DE/rand/2 

�
 v i,G = 

�
 x r 1 ,G + F ( � x r 2 ,G − �

 x r 3 ,G ) + F ( � x r 4 ,G − �
 x r 5 ,G ) (3) 

4) DE/best/2 

�
 v i,G = 

�
 x best,G + F ( � x r 1 ,G − �

 x r 2 ,G ) + F ( � x r 3 ,G − �
 x r 4 ,G ) (4) 

5) DE/current-to-best/1 

�
 v i,G = 

�
 x i,G + F ( � x best,G − �

 x i,G ) + F ( � x r 1 ,G − �
 x r 2 ,G ) (5) 

where � x best,G denotes the best vector in the current population P G , r m 

∈ �\ { i } with m = 1 , 2 , . . . , 5 are distinct integers

and F is a user-specified mutation control parameter within (0, 1]. 

Crossover: After mutation, crossover is performed on each mutant vector � v i,G and its corresponding target vector � x i,G to

generate a trial vector � u i,G . The classic binomial crossover is formulated as follows: 

u i, j,G = 

{
v i, j,G if ran d j (0 , 1) < CR or j = j rand 

x i, j,G otherwise 
(6) 

where rand j (0, 1) is a uniform random number within (0, 1), j rand is a randomly generated integer from [1, D ] , and CR is a

user-defined crossover control parameter within [0,1]. 

Selection : Selection is to determine the better vector between 

�
 u i,G and 

�
 x i,G which will survive in the next generation,

based on their fitness values f ( · ). 

�
 x i,G +1 = 

{
�
 u i,G if f ( � u i,G ) ≤ f ( � x i,G ) 

�
 x i,G otherwise 

(7) 

2.2. Advanced DE variants 

Since its advent, DE has attracted a lot of attention and many DE variants [ 8 , 24 ] have been proposed with different

characteristics. Among them, self-adaptive [ 4 , 22 , 39 ] and adaptive [ 29 , 33 , 46 ] DEs exhibit encouraging performance [2] . 

Self-adaptive DEs: Self-adaptive DEs [ 4 , 22 , 39 ] allow adjustments of strategy and/or parameter settings in each individual

during evolution. The self-adaptive DE (jDE) [4] encodes control parameters F and CR into each individual and makes them

self-adaptive during the evolution. The Parameters and Mutation Strategies Ensemble DE (EPSDE) [22] assigns mutation

strategies and control parameters to individuals from a preset pool. The Covariance matrix Learning and Bimodal Distribution

Parameter Setting Based DE (CoBiDE) [39] introduces a self-adaptive bimodal parameter sample scheme. 

Adaptive DEs: Adaptive DEs [ 29 , 33 , 46 ] usually collect population-wise success experience from previous generations and

then use it as a guideline for later evolution. The Strategy Adaptive DE (SaDE) [29] dynamically determines the selecting

probabilities of four mutation strategies according to their previous performances. The Adaptive DE (JADE) [46] introduces

a new “current-to-pbest/1” mutation strategy and a success-based parameter adaptation mechanism. Due to its impressive

performance, JADE was later modified, giving birth to many variants, such as Success History Based Adaptive DE (SHADE)

[33] , Linear Population Size Reduction Based SHADE (L-SHADE) [34] , Collective Information Powered DE (CIPDE) [47] and

Selective Candidate with Similariy Selection Rule (SCSS) based variants [45] . 

In addition, with the support of various mutation strategies, plentiful multiple strategies based DEs have also been pro-

posed. The Composite DE (CoDE) [38] adopts three mutation strategies with different pairs of F and CR to generate off-

spring. The Multi-population Based Ensemble of Multiple Strategies DE (MPEDE) [44] , Multiple Subpopulations Based Adap-

tive DE (MPADE) [6] and Individual-dependent DE (IDE) [36] assign different mutation strategies to different subpopulations.

Apart from single-objective optimization, mutation strategy selection has also been extended to multi-objective optimization

[ 19 , 20 ]. 

Besides, the mutation and crossover operations of DE have also been improved using various mechanisms, such as rank-

ing based mutation [12] , two-step subpopulation based mutation [48] , eigenvector based crossover [10] , hybrid linkage

crossover [5] and orthogonal crossover [40] , to name a few. 

2.3. Multi-method search 

According to the No Free Lunch Theorem (NFL) [41] , no single algorithm or setting can perform the best for all kinds

of problems. For this reason, many researchers have put much effort s into the ensemble of multiple operators or multiple

EAs into their algorithms to confront different challenges in different evolutionary stages, which in turn improve the overall

performance. 

Vrugt et al. [37] merged multiple EAs, including Genetic Algorithm (GA) [14] , Covariance Matrix Adaptation Evolution

Strategy (CMA-ES) [15] , Particle Swarm Optimizer (PSO) [49] and DE together to formulate the Multi-algorithm Genetically

Adaptive Method for Single Objective Optimization (AMALGAM-SO) to promote efficient searches. AMALGAM-SO dynami- 

cally adjusts subpopulation size for each constituent algorithm according to its previously achieved performance. Peng et al.
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[25] proposed a population-based algorithm portfolio (PAP) scheme, in which each constituent optimizer is given a preset

time budget to run, while different optimizers are allowed to interact with each other based on a migration strategy. Gong

et al. [13] proposed a cheap surrogate model to estimate the densities of multiple candidates produced by multiple operators

and then select the one with maximum density as offspring. Iacca et al. [16] suggested the Multi-strategy Coevolving Aging

Particle Optimizer (MS-CAP), combining the advantages of aging based PSO and multiple strategies based DE. In [23] , Noman

and Iba proposed an adaptive local search method to improve the performance of classic DE. In [27] , Piotrowski introduced

a memetic DE by incorporating a local search algorithm into an adaptive DE. In [17] , Kämpf and Robinson proposed a hybrid

algorithm which combined CMA-ES with a hybrid DE. In [21] , Li et al. designed a Hybrid DE (HDE) framework to perform

two DEs alternatively during the evolution process. In HDE, only one of the DEs is activated in each generation. If the DE

that is running is regarded as inefficient, it will be replaced by the other one. 

3. Proposed MLCC framework 

3.1. Motivation 

From the literature reviews presented in Section 2 , it can be observed that: (1) Existing multi-method search [ 25 , 37 , 44 ]

commonly divides the entire population into several subpopulations where each subpopulation evolves with an associated

method. This approach may result in two drawbacks. Firstly, as recommended in many studies, e.g. [30] , the subpopulation

size needs to be large enough to ensure a promising performance. Therefore, it may result in a large population size, which

leads to a deterioration in exploitation capability of the constructed algorithms. Secondly, integrating multiple DE variants

under the multi-method searching framework may not be easy. For example, the multi-method search in [ 25 , 37 , 44 ] had

to be modified empirically for new DE variants. Also, some complex variants, such as IDE [36] which is already a multi-

population based algorithm, are hard to integrate. Furthermore, it still remains a mystery on how to take advantage of all

employed methods to achieve more promising search directions; (2) Since the introduction of SaDE (Strategy adaptive DE)

[29] algorithm, the concept of adaptation has been widely adopted in designing DE variants, usually realized with multiple

mutation strategies [ 16 , 19 , 22 , 44 ], multiple crossover strategies [ 8 , 23 ], and the adjustments of control parameters [ 33 , 39 46 ].

Regarding the parameter mechanism, several self-adaptive [ 4 , 22 , 39 ] and adaptive [ 29 , 33 , 46 ] methods have been proposed.

However, due to the fact that a single mechanism may consistently generate parameters with fixed characteristics, it may

hinder the capability of an algorithm to seek out better parameters; (3) Existing DEs evolve each individual with equal

amount of effort s, despite their potentials. 

With the above considerations, this paper proposes a parallel multi-layer structure based competitive-cooperative (MLCC)

DE framework, empowered by two mechanisms, namely the individual preference-based layer selecting (IPLS) mechanism

and the computational resource allocation bias (RAB) mechanism. 

3.2. Competitive IPLS mechanism 

Fig. 1 depicts the proposed parallel multi-layer structure and IPLS mechanism, in which M different methods are associ-

ated with M layers L m 

( m = 1, 2, . . . , M ) and there are NP individuals { � x i,G , i ∈ { 1 , 2 , . . . , NP } } in the population. 

The multi-layer structure is designed as follows. In every generation, the entire population is monitored simultaneously

by multiple optimizers assigned in their corresponding layers. Each target individual is assigned to a specific layer at a

particular time based on its preference (for example, individual 2 is assigned to L 1 in Fig. 1 (a)). However, it is still possible

to select any individual in the entire population for the mutation process in a layer. 

Preference of the target individuals is determined by the IPLS mechanism ( Algorithm 1 ), described as follows: 

At generation G = 0, individual preferences { I P i,G , i ∈ { 1 , 2 , . . . , NP } } ar e randomly initialized (line 1 in Algorithm 1 ). After-

wards, for each individual i at generation G , if the trial vector generated by its favor method IP i, G successfully replaces the

target vector, then the preference is preserved to the next generation (line 7 in Algorithm 1 ). Otherwise, the individual i will

randomly reconnect to another distinct layer, in which another DE is employed (line 11 in Algorithm 1 ). Accordingly, algo-

rithmic settings of the M methods are updated, following their original designs (lines 8 and 12 in Algorithm 1 ). In this way,

the M layers compete and the winner will eventually take more individuals. An illustrative example is depicted in Fig. 1 (b).

The parallel framework can effectively deal with self-adaptive [ 4 , 22 , 39 ] and adaptive [ 29 , 33 46 ] DEs even though they

have a different structure. An example is given in Fig. 2 , where an adaptive DE and a self-adaptive DE reside at L 1 and L 2 ,

respectively (Note: Other layers are ignored for clarity.) 

For self-adaptive DEs, such as jDE [4] , EPSDE [22] and CoBiDE [39] , generational strategy or (and) parameters are as-

sociated with each individual. Therefore, as shown in the example, L 2 records and updates strategies or (and) parameters

corresponding to each individual in memory { ME M L 2 { i } , i ∈ { 1 , 2 , . . . , NP }} throughout the entire evolutionary process. When

�
 x i,G is associated with L 2 , i.e. I P i,G = 2 , strategies or (and) parameters stored in MEM L 2 { i } will be taken to generate a trial

vector � u i,G . Consequently, MEM L 2 { i } will be updated according to the fitness comparison result between 

�
 x i,G and 

�
 u i,G . 

For adaptive DEs, such as JADE [46] and SHADE [33] , following their original designs, only population-wise strategies or

(and) parameters are required. Given a layer using adaptive DEs, this piece of information will be stored and used by any

individual associated with the layer. Consider the example shown in Fig. 2 , SHADE is used in L 1 . Hence, the memory M F

and M CR [33] are used to store the values determined by the latest successful control parameters F and CR . For any � x i,G with
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Fig. 1. Illustration of the parallel multi-layer structure and IPLS mechanism. (a) Each individual connects to a layer, denoted by the solid circle while each 

layer can select any individual from the entire population for the mutation process of the DE employed. (b) Update of layer assignment by IPLS. 

Algorithm 1 Competitive IPLS mechanism. 

1: Set generation count G = 0, initialize a population P 0 = { � x i, 0 , i ∈ { 1 , 2 , . . . NP} } , initialize each me thod m ( m = 1, 2, . . . , M ), initialize individual 

preference { I P i, 0 = ceil(ran d i (0 , 1) × M) , i ∈ { 1 , 2 , . . . NP} } . // ceil ( · ) denotes a ceiling value. 

2: While the stopping criteria are not satisfied, Do 

3: For i = 1: NP Do 

4: For � x i,G , generate a trial vector � u i,G by its preference method IP i, G ; 

5: If f ( � u i,G ) < f ( � x i,G ) 

6: �
 x i,G +1 = 

�
 u i,G ; 

7: I P i,G +1 = I P i,G ; 

8: Update the generation strategies and parameter settings of the method IP i, G if required by its original design; 

9: Else 

10: �
 x i,G +1 = 

�
 x i,G ; 

11: I P i,G +1 = ceil(ran d i (0 , 1) × M) \ I P i,G ; // “\ ” implies exclusion of the previous method 

12: Update the generation strategies and parameter settings of the method IP i, G if required by its original design; 

13: End If 

14: End For 

15: Evaluate the current evolution status and update the settings of the M methods if required by their original designs; 

16: G = G + 1; 

17: End While 

 

 

I P i,G = 1 , L 1 retrieves parameters from M F and M CR for the generation of trial vectors. Subsequently, parameters determined

by the successful update of � x i,G are archived to update M F and M CR . 

In this paper, an example of combining two adaptive DEs is described in Section 4.1 while another example of integrating

an adaptive DE and a self-adaptive DE is given in Section 4.4 . 
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Fig. 2. Illustration of parameter adaptation in multi-layer structure. For self-adaptive DE in L 2, strategy or (and) parameters corresponding to each individ- 

ual are stored. For adaptive DE in L 1, only population-wise strategies or (and) parameters are needed. The double-headed arrows indicate the interaction 

between individuals and the memory in the layer. 

Fig. 3. Average Rank of individuals that generate new better solution (a) for “DE/rand/1/bin”; (b) for “DE/best/1/bin”. Experiments are conducted on thirty 

30-dimensional CEC2014 benchmark functions with 51 independent runs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3. Cooperative RAB mechanism 

Existing DEs allocate equal amount of computational resources to each individual, regardless of its potential in finding

a better solution. In the following experiment, it is shown that it is more likely to generate new best solutions ( NBS ) by

evolving superior solutions than inferior ones. Therefore, an even distribution of resources may not be efficient. 

The experiment is conducted with two classic algorithms “DE/rand/1/bin” and “DE/best/1/bin” tested with 30-

dimensional CEC2014 benchmark functions. Parameters settings for both algorithms are: F = 0.7, CR = 0.5 and NP = 5 × D,

and the termination condition is set as 10 4 × D function evaluations, where D = 30 is the dimension of the functions. 

A rank archive, R , is used to record the rank of individuals who produce NB S, while frequency i indicates the frequency

that the individual with i- th rank generates NBS . Define AR as the average rank of individuals contributing to NBS, one has

AR = 

1 
r 

∑ r 
i =1 R i , where r is the size of archive R . If the contribution of NBS is independent of individual’s rank, the expected

value of AR can be computed by A R exp = ( 
∑ NP 

i =1 i ) /NP = ( 
∑ 150 

i =1 i ) / 150 = 75 . 5 . 

Fig. 3 depicts the value of AR for each function in the median trial of 51 independent runs, while the dotted line in-

dicates the value of AR exp . As shown, AR is smaller than AR exp on all the functions tested for both “DE/rand/1/bin” and

“DE/best/1/bin”. This simply implies that superior individuals have higher potentials to generate NBS than inferior ones.

To further demonstrate this, Fig. 4 shows the value of frequency i on representative unimodal functions F2 and multimodal

functions F9. It can be clearly seen that individuals with a higher rank produce more NBS than those with a lower rank. 

Inspired by this phenomenon, a resource allocation bias (RAB) scheme is proposed to emphasize high-quality individuals

by using all the layers. Its pseudocode is given in Algorithm 2 . At each generation, the fitness ranking FR ( i ) of each individual

i ∈ { 1 , 2 , . . . NP } is first determined (line 1). The smaller the FR , the better the solution. Then, the to p = ceil(rand(0 , 1) ×
G 
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Fig. 4. Values of frequency i on unimodal functions F2 and multimodal functions F9: (a) for “DE/rand/1/bin”; (b) for “DE/best/1/bin”. 

Algorithm 2 Cooperative RAB mechanism. 

1: At generation G , determine the fitness ranking FR ( i ), i ∈ { 1 , 2 , . . . NP} of each individual, set to p G = ceil(rand(0 , 1) × NP × N) ; 

2: For i = 1: NP Do 

3: If FR ( i ) ≤ top G 
4: For � x i,G , generate M trial vectors � u i m ,G , m ∈ { 1 , 2 , . . . M} by using M methods; 

5: For m = 1: M Do 

6: Compare � u i m ,G with � x i,G ; 

7: Update the generation strategies and parameter settings of method m if required by its original design; 

8: End For 

9: Choose the best trial vector � u i b ,G in terms of fitness from 

�
 u i m ,G , m ∈ { 1 , 2 , . . . M} , where b indicates the index of the best method; 

10: If f ( � u i b ,G ) < f ( � x i,G ) 

11: �
 x i,G +1 = 

�
 u i b ,G ; 

12: Else 

13: �
 x i,G +1 = 

�
 x i,G ; 

14: End If 

15: Else If FR ( i ) > top G 
16: For � x i,G , generate a trial vector � u i,G ; 

17: If f ( � u i,G ) < f ( � x i,G ) 

18: �
 x i,G +1 = 

�
 u i,G ; 

19: Else 

20: �
 x i,G +1 = 

�
 x i,G ; 

21: End If 

22: End If 

23: End For 

 

 

 

 

 

 

 

 

N P × N ) high-rank solutions are regarded as high-quality individuals, where N ∈ [0, 1] is a preset parameter. For each top

rank individual, M trial vectors � u i m ,G , m ∈ { 1 , 2 , . . . M} are generated by M methods and the settings of each method are

updated by comparing � u i m ,G with 

�
 x i,G (lines 4–8). Subsequently, the fittest trial vector � u i,G is chosen to compare with the

target vector � x i,G (lines 9–14). In this way, the M layers work cooperatively to promote the quality of the solution. On the

contrary, inferior individuals are to produce one offspring each (line 16). 

The benefits of the cooperative RAB mechanism are twofold. Firstly, computational resources are re-distributed in a better

way. At each generation, superior solutions are given M trials by M complementary methods. Therefore, the top individuals

can be refined with a higher probability and are expected to lead the entire population towards more promising searching

areas. Secondly, inferior solutions still have a chance to generate one candidate to compete with the superior solutions, thus

maintaining the exploratory capability of DE. 
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Fig. 5. Illustration of MLCC ( M = 2). The top ranked individuals connect to all layers and are evolved by M methods, while the others are connected to 

one layer. Note: For clarity, only two layers are shown and the number indicates the rank of an individual. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4. The MLCC framework 

Combining IPLS and RAB, the proposed MLCC framework is depicted in Fig. 5 and its pseudocode is presented in

Algorithm 3 . As observed, for target vectors with ranking FR ≤ top G , M methods are considered (lines 6–9) and if the tar-

get vectors are successfully updated, their preferences are renewed with the corresponding best method b (line 14). While

for the inferior vectors, only their preferences are used (line 19). 

Compared to existing methods, the novelty and characteristics of MLCC framework can be summarized by the following.

(1) The influence between individuals and each layer in MLCC is bidirectional. On the one hand, an individual can obtain

algorithmic configurations from the layers for evolving, while on the other hand, it also returns feedbacks to the

layers. This significantly differs from CoDE [38] , in which algorithmic settings can only influence individuals regardless

of the preference of each individual. 

(2) MLCC introduces a novel multi-layer structure, which is in nature different from AMALGAM-SO [37] , PAP [25] , HDE

[21] and MPEDE [44] which only uses one layer. With the multi-layer structure, each individual in MLCC can store,

utilize and update its evolution information in multiple layers during the evolution, for example, they can evolve

multiple layer-associated adaptive/self-adaptive F and CR parameters. Moreover, in MLCC, the incorporation of self-

adaptive DEs [ 4 , 22 , 39 ] becomes much easier. 

(3) The “multi-layer”, rather than “multi-population” feature in MLCC significantly increase the flexibility in integrating

DE variants with relatively complex proposals, such as the multi-population based IDE [36] algorithm. 

(4) In MLCC, each layer has access to the current population. Although only part of the entire population is evolved by

the m- th layer, where m ∈ { 1 , 2 , . . . M} , the vectors for mutation are selected from the entire population, following the

original design of m th method. In this context, the M methods work in a collaborative manner. This is different from

PAP [25] and MPEDE [44] , in which individuals evolve only within their corresponding subpopulations. 

(5) MLCC preserves the original design of the baselines. The procedures performed in each layer identical to those in the

original algorithms, making MLCC easy to implement. 

(6) RAB mechanism is introduced in MLCC to redistribute the computational resources and simultaneously take advan-

tages of all the M methods to enhance performance. 

3.5. On the selection of the M methods 

This subsection discusses the selection criteria of the M methods for MLCC. In general, the following guidelines are given.

(1) The M methods are high-performers in order to construct a competitive DE; (2) the M methods should complement each

other to ensure a stable performance for a wide range of problems. 

To determine suitable candidates, nine state-of-the-art and up-to-date DE variants, namely jDE [4] , SaDE [29] , EPSDE

[22] , JADE [46] , CoDE [38] , CoBiDE [39] , MPEDE [44] , SHADE [33] and IDE [36] have been run on 30-dimensional CEC2014

benchmark function set. The CEC2014 benchmark set is considered because it covers a wide range of functions with diverse

mathematical properties. Therefore, the test results would reflect the overall performance of an algorithm. 
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Algorithm 3 The MLCC framework. 

1: Initialize a population P 0 = { � x i, 0 , i ∈ { 1 , 2 , . . . NP} } , initialize each method m ( m = 1, 2, . . . , M ), initialize the individual preference 

{ I P i, 0 = ceil(ran d i (0 , 1) × M) , i ∈ { 1 , 2 , . . . NP} } , set generation count G = 0, set threshold value N ; 

2: While the stopping criteria are not satisfied, Do 

3: Determine the fitness ranking FR(i) of each individual i in the population, set to p G = ceil(rand(0 , 1) × NP × N) ; 

4: For i = 1: NP Do 

5: If FR ( i ) ≤ top G 
6: For � x i,G , generate M trial vectors � u i m ,G , m ∈ { 1 , 2 , . . . M} by using M methods; 

7: For m = 1: M 

8: Compare � u i m ,G with � x i,G ; 

9: Update the generation strategies and parameter settings of method m if required by its original design; 

10: End For 

11: Choose the best trial vector � u i b ,G in terms of fitness from 

�
 u i m ,G , m ∈ { 1 , 2 , . . . M} , where b indicates the index of the best method; 

12: If f ( � u i b ,G ) ≤ f ( � x i,G ) 

13: �
 x i,G +1 = 

�
 u i b ,G ; 

14: I P i,G +1 = b; 

15: Else 

16: �
 x i,G +1 = 

�
 x i,G ; 

17: End If 

18: Else If FR ( i ) > top G 
19: For � x i,G , generate a trial vector � u i,G by its preference method IP i, G ; 

20: If f ( � u i,G ) ≤ f ( � x i,G ) 

21: �
 x i,G +1 = 

�
 u i,G ; 

22: I P i,G +1 = I P i,G ; 

23: Update the generation strategies and parameter settings of method IP i, G if required by its original design; 

24: Else 

25: �
 x i,G +1 = 

�
 x i,G ; 

26: I P i,G +1 = ceil(ran d i (0 , 1) × M) \ I P i,G ; 
27: Update the generation strategies and parameter settings of the method IP i, G if required by its original design; 

28: End If 

29: End If 

30: End For 

31: Evaluate the current evolution status and update the settings of the M methods if required by their original designs; 

32: G = G + 1; 

33: End While 

Table 1 

P-values obtained by comparing IDE with the other four most com- 

petitive DEs according to multi-problem Wilcoxon’s test. 

IDE v.s . R + R − p -value α = 0.05 

CoDE 263.5 171.5 0.314 No 

CoBiDE 240.5 194.5 0.611 No 

MPEDE 267.5 167.5 0.274 No 

SHADE 271.0 194.0 0.422 No 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter settings for the DEs being considered, are summarized in Table S1 in the supplemental file. The mean and

standard deviations of solution error values, given by f ( x ) – f ( x ∗), over 51 independent runs are tabulated in Table S2 in

the supplemental file, where f ( x ∗) and f ( x ) are the global optima and the best fitness after 10 4 × D function evaluations,

respectively [18] . The comparison results of the DEs given by Wilcoxon signed-rank test [32] with a significance level of 0.05

are summarized in Table S3. 

In Table 1 , the p -values obtained by comparing IDE with the other four most competitive DEs are presented, while the

overall performance rankings of the nine considered DEs are summarized in Table 2 . 

As observed in Table 1 , the performance of IDE is comparable to CoDE, CoBiDE, MPEDE and SHADE at α = 0.05. As shown

in Table 2 , SHADE and IDE are the best and second best-performing DEs with ranking values of 3.48 and 3.53, respectively. In

addition, according to single problem analysis between SHADE and IDE using Wilcoxon signed-rank test with 5% significance

level, IDE wins, ties and loses in 13, 8 and 9 functions, respectively when compared with SHADE. This indicates that the

characteristics of SHADE and IDE complement each other. In summary, Tables 2 and S2 show that SHADE and IDE are the

appropriate candidates for MLCC. 

3.6. The MLCC-SI algorithm 

Following Algorithm 3 , the MLCC variant for two selected methods, SHADE and IDE, denoted as MLCC-SI is implemented

and the pseudocode is provided as Algorithm S-1 in the supplemental file. It should be noted that procedures for SHADE

and IDE used in the layers are identical to those in the original literature [ 33 , 36 ]. 
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Table 2 

Performance ranking of the considered DE vari- 

ants on 30-dimensional CEC2014 benchmark set 

using Friedman’s test. 

Algorithm Ranking 

SHADE 3.48 

IDE 3.53 

CoBiDE 4.06 

MPEDE 4.21 

CoDE 4.86 

JADE 5.15 

jDE 5.76 

EPSDE 6.38 

SaDE 7.53 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Simulation and discussion 

In this section, the effectiveness of the proposed MLCC framework and the performance of the MLCC variants is verified

through comprehensive experiments conducted on the CEC2014 test set [18] . The 30 benchmark functions in the CEC2014

test set can be classified into four categories: unimodal functions (F1-F3), simple multimodal functions (F4-F16), hybrid

functions (F17-F22) and composition functions (F23-F30). 

Performance of the considered algorithms is evaluated based on solution error value, which was defined previously in

Section 3.5 . Following the suggestion in [18] , solution error values smaller than 10 −8 are reported as zero. In the experi-

ments, each algorithm is run independently on every function for 51 times. In each run, 10 4 × D function evaluations are

limited, while the final solution error values obtained are compared. It is noted that, to have a fair comparison, the initial

populations for all algorithms are set to be the same as in a single run. In the tables presented, the best results achieved

for each function is marked in bold . 

To have statistically sound conclusions, single problem Wilcoxon’s signed-rank test [32] with a significance level of 0.05,

multiple problem Wilcoxon’s test [11] and Friedman’s test [11] are used in the performance comparison. Regarding single

problem Wilcoxon’s signed-rank test, the symbols “−”, “= ” and “+ ” in the tables represent that the performance of the

compared algorithm is significantly worse than, similar to or better than that of the considered algorithm, respectively. In

addition, for ease of comparison, “Positive subtracts Negative” value (P–N value) is also given, where “Positive” is the number

of functions that the considered algorithm outperforms the algorithm compared while “Negative” is the number of functions

for the opposite case. 

4.1. Effectiveness of the MLCC framework 

In this subsection, the effectiveness of the proposed MLCC framework is verified through performance comparisons be-

tween the MLCC-SI algorithm and its two baseline DEs on the 30 and 50-dimensional CEC2014 test sets. Parameter settings

for the algorithms are summarized as follows: 

(1) SHADE: NP = 5 × D , M F = {0.7}, M CR = {0.5}, and H = NP . 

(2) IDE: NP = 5 × D , T = 10 0 0 D / NP , G T = 5 T , SR T = 0 ( G < G T ), and SR T = 0.1 ( G ≥ G T ) . 

(3) MLCC-SI: M F = {0.7}, M CR = {0.5}, and H = NP (For SHADE layer); T = 10 0 0 D / NP , G T = 5 T , SR T = 0 ( G < G T ), and SR T = 0.1

( G ≥ G T ) (For IDE layer); NP = 5 × D and N = 0.05. 

The mean and standard deviations of error values achieved with 51 independent runs and the statistical comparison

results are shown in Table 3 . 

From Table 3 , it can be observed that MLCC-SI performs significantly better than SHADE and IDE. Out of the total 120

cases, MLCC-SI wins in 74 ( = 15 + 16 + 22 + 21) cases and only loses in 12 ( = 5 + 1 + 4 + 2) cases. MLCC-SI outperforms

SHADE in 37 ( = 15 + 22) functions and underperforms in 9 ( = 5 + 4) functions. When compared with IDE, MLCC-SI is su-

perior in 37 ( = 16 + 21) cases and inferior in 3 ( = 1 + 2) cases. 

Considering the features of the test functions, the following results can be observed: 

For unimodal functions F1-F3, SHADE performs the best while IDE is the worst. MLCC-SI loses to SHADE in 3 cases but

wins IDE in 4 cases. 

For simple multimodal functions F4-F16, MLCC-SI significantly outperforms SHADE and IDE. In the total 52 ( = 13 × 4)

cases, MLCC-SI wins SHADE and IDE in 18 ( = 8 + 10) and 15 ( = 7 + 8) cases and loses in 2 ( = 2 + 0) and 1 case, respectively.

For hybrid functions F17-F22, Table 3 shows that MLCC-SI is again the best. MLCC-SI performs better than SHADE and

IDE in 21 functions and only loses in 1 function. 

For composition functions F23-F30 with complex mathematical characteristics, from Table 3 , MLCC-SI is also the best

performer. It is superior to SHADE and IDE in 9 (3 + 6) and 7 ( = 2 + 5) cases and inferior in 3 ( = 1 + 2) and 2 ( = 1 + 1) cases,

respectively. 
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Table 3 

Performance comparisons of MLCC-SI with its baseline DE variants on 30- and 50-dimensional cec2014 benchmark set over 51 independent runs. 

D = 30 D = 50 

SHADE IDE MLCC-SI SHADE IDE MLCC-SI 

F1 2.59E + 02 + (5.67E + 02) 1.18E + 05 − (9.41E + 04) 4.76E + 03 (5.69E + 03) 1.19E + 05 + (6.14E + 04) 1.24E + 06 − (3.41E + 05) 2.79E + 05 (1.00E + 05) 

F2 0.00E + 00 = (0.00E + 00) 0.00E + 00 = (0.00E + 00) 0.00E + 00 (0.00E + 00) 0.00E + 00 + (0.00E + 00) 2.28E + 00 − (2.53E + 00) 2.67E − 04 (3.59E − 04) 

F3 0.00E + 00 = (0.00E + 00) 0.00E + 00 = (0.00E + 00) 0.00E + 00 (0.00E + 00) 0.00E + 00 = (0.00E + 00) 1.85E + 01 − (1.27E + 01) 2.10E − 10 (1.50E − 09) 

F4 0.00E + 00 + (0.00E + 00) 2.08E-02 − (4.14E − 02) 1.63E − 07 (4.37E − 07) 8.35E + 01 − (1.16E + 01) 7.19E + 01 - (2.97E + 01) 6.53E + 01 (2.62E + 01) 

F5 2.03E + 01 − (3.54E-02) 2.02E + 01 − (5.68E − 02) 2.02E + 01 (5.40E − 02) 2.05E + 01 − (4.03E − 02) 2.03E + 01 = (5.95E − 02) 2.03E + 01 (5.46E − 02) 

F6 6.41E + 00 − (3.86E + 00) 6.20E − 02 = (2.82E − 01) 8.71E − 02 (2.84E − 01) 1.18E + 00 = (3.45E + 00) 9.34E − 02 + (3.14E − 01) 3.96E − 01 (5.61E − 01) 

F7 0.00E + 00 = (0.00E + 00) 0.00E + 00 = (0.00E + 00) 0.00E + 00 (0.00E + 00) 0.00E + 00 = (0.00E + 00) 2.22E − 03 − (4.10E − 03) 0.00E + 00 (0.00E + 00) 

F8 0.00E + 00 = (0.00E + 00) 4.33E − 10 = (3.09E − 09) 0.00E + 00 (0.00E + 00) 1.84E − 02 − (5.39E − 03) 4.32E − 02 − (1.97E − 01) 0.00E + 00 (0.00E + 00) 

F9 2.75E + 01 − (4.18E + 00) 2.46E + 01 − (5.33E + 00) 2.14E + 01 (4.44E + 00) 8.82E + 01 − (8.25E + 00) 5.99E + 01 − (1.01E + 01) 4.47E + 01 (8.15E + 00) 

F10 1.57E − 01 + (3.94E − 02) 5.68E + 00 − (1.66E + 01) 1.12E + 00 (9.49E − 01) 6.06E + 01 − (6.43E + 00) 3.34E + 01 = (4.90E + 01) 9.00E + 00 (3.38E + 00) 

F11 1.97E + 03 − (2.06E + 02) 1.92E + 03 − (3.53E + 02) 1.63E + 03 (3.34E + 02) 6.27E + 03 − (3.93E + 02) 4.20E + 03 = (6.65E + 02) 4.03E + 03 (5.06E + 02) 

F12 3.08E − 01 − (4.82E − 02) 2.91E − 01 − (5.97E − 02) 2.60E − 01 (5.31E − 02) 6.12E − 01 − (6.73E − 02) 3.68E − 01 = (7.37E − 02) 3.51E − 01 (5.9 − E-02) 

F13 2.15E − 01 − (2.58E − 02) 1.87E − 01 = (2.20E − 02) 1.83E − 01 (2.7 − E − 02) 3.01E − 01 − (2.99E − 02) 2.96E − 01 − (3.09E − 02) 2.77E − 01 (2.58E − 02) 

F14 2.14E − 01 − (2.24E − 02) 1.82E − 01 = (3.19E − 02) 1.94E − 01 (2.21E − 02) 2.50E − 01 = (1.82E − 02) 2.70E − 01 − (2.23E − 02) 2.56E − 01 (2.36E − 02) 

F15 3.83E + 00 − (4.70E − 01) 2.69E + 00 = (5.27E-01) 2.47E + 00 (4.20E − 01) 1.18E + 01 − (8.02E − 01) 7.36E + 00 − (1.93E + 00) 6.41E + 00 (1.34E + 00) 

F16 9.55E + 00 = (3.49E − 01) 1.00E + 01 − (3.94E − 01) 9.52E + 00 (4.66E − 01) 1.88E + 01 − (2.77E − 01) 1.92E + 01 − (4.21E − 01) 1.85E + 01 (4.53E − 01) 

F17 7.62E + 02 - (3.58E + 02) 5.97E + 02 − (2.97E + 02) 2.31E + 02 (1.23E + 02) 2.21E + 03 − (5.57E + 02) 7.22E + 03 − (2.74E + 03) 1.27E + 03 (4.01E + 02) 

F18 1.44E + 01 - (7.28E + 00) 1.90E + 01 − (5.87E + 00) 9.79E + 00 (3.36E + 00) 8.03E + 01 − (2.31E + 01) 3.93E + 01 − (1.09E + 01) 3.55E + 01 (1.17E + 01) 

F19 4.01E + 00 − (6.47E − 01) 2.91E + 00 − (4.69E − 01) 3.02E + 00 (5.37E − 01) 1.29E + 01 − (5.85E + 00) 1.03E + 01 − (7.50E-01) 9.87E + 00 (3.98E − 01) 

F20 4.96E + 00 + (2.19E + 00) 1.08E + 01 − (3.24E + 00) 5.91E + 00 (1.42E + 00) 4.11E + 01 − (1.63E + 01) 4.54E + 01 − (1.04E + 01) 2.53E + 01 (6.78E + 00) 

F21 1.29E + 02 = (8.62E + 01) 3.30E + 02 - (1.54E + 02) 1.04E + 02 (7.65E + 01) 9.75E + 02 − (2.81E + 02) 1.23E + 03 − (3.77E + 02) 5.42E + 02 (1.92E + 02) 

F22 1.23E + 02 − (5.85E + 01) 7.30E + 01 − (5.78E + 01) 3.55E + 01 (3.45E + 01) 4.85E + 02 − (1.22E + 02) 3.04E + 02 = (1.06E + 02) 2.75E + 02 (1.13E + 02) 

F23 3.15E + 02 = (4.02E-13) 3.15E + 02 + (3.46E − 13) 3.15E + 02 (4.02E − 13) 3.44E + 02 − (4.60E-13) 3.44E + 02 − (4.46E-13) 3.44E + 02 (4.18E − 13) 

F24 2.23E + 02 = (9.22E − 01) 2.23E + 02 = (7.24E − 01) 2.23E + 02 (7.91E − 01) 2.69E + 02 − (1.90E + 00) 2.58E + 02 + (3.39E + 00) 2.58E + 02 (2.93E + 00) 

F25 2.04E + 02 − (7.68E − 01) 2.03E + 02 = (2.33E − 01) 2.03E + 02 (2.95E − 01) 2.11E + 02 − (2.59E + 00) 2.07E + 02 − (6.05E − 01) 2.06E + 02 (8.22E − 01) 

F26 1.00E + 02 − (2.79E − 02) 1.00E + 02 = (2.60E − 02) 1.00E + 02 (2.41E − 02) 1.00E + 02 − (3.37E − 02) 1.06E + 02 = (2.37E + 01) 1.00E + 02 (2.83E − 02) 

F27 3.00E + 02 + (1.11E-13) 3.30E + 02 = (4.63E + 01) 3.47E + 02 (5.07E + 01) 3.33E + 02 − (2.79E + 01) 3.06E + 02 = (1.65E + 01) 3.20E + 02 (2.65E + 01) 

F28 7.92E + 02 = (1.86E + 01) 8.26E + 02 − (8.10E + 01) 7.89E + 02 (3.09E + 01) 1.09E + 03 + (3.20E + 01) 1.28E + 03 − (9.49E + 01) 1.16E + 03 (3.60E + 01) 

F29 7.20E + 02 = (6.01E + 00) 5.75E + 02 = (2.15E + 02) 6.94E + 02 (1.27E + 02) 8.27E + 02 − (5.63E + 01) 1.03E + 03 − (1.26E + 02) 6.22E + 02 (1.41E + 02) 

F30 1.22E + 03 − (4.61E + 02) 5.18E + 02 − (7.28E + 01) 5.20E + 02 (1.60E + 02) 8.45E + 03 + (4.59E + 02) 9.90E + 03 − (5.82E + 02) 8.61E + 03 (3.99E + 02) 

−/ = / + 15/10/5 16/13/1 22/4/4 21/7/2 
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Table 4 

Comparison results of MLCC-SI with its baseline DE variants on 30- 

and 50-dimensional CEC2014 benchmark set according to multi- 

problem Wilcoxon’s test. 

MLCC-SI v.s. R + R − p- value α = 0.05 

SHADE 1394.5 375.5 1.18E − 04 Yes 

IDE 1512.0 258.0 2.00E − 06 Yes 

Table 5 

Overall performance ranking of MLCC-SI and its 

baseline DE variants on 30- and 50-dimensional 

CEC2014 benchmark set by Friedman’s test. 

Algorithm Ranking 

MLCC-SI 1.45 

IDE 2.26 

SHADE 2.28 

Table 6 

Comparison results of MLCC-SI with its four vari- 

ants on 30 and 50-dimensional CEC2014 benchmark 

set according to Wilcoxon signed-rank test with a 

significance level of 0.05. 

−/ = / + D = 30 D = 50 

Variant-I 8/21/1 7/21/2 

Variant-II 8/19/3 13/15/2 

Variant-III 13/14/3 16/12/2 

Variant-IV 7/21/2 7/19/4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Furthermore, the performance of MLCC-SI, SHADE, and IDE are compared according to multiple problem Wilcoxon’s test,

and the results are shown in Table 4 . Regarding the p -value obtained, it can be concluded that the overall performance

of MLCC-SI is significantly better than those of SHADE and IDE with 5% significance level. This is also confirmed by the

Friedman’s test results, as given in Table 5 , that MLCC-SI achieves a much smaller ranking value (1.45) while SHADE and

IDE perform similarly. In conclusion, MLCC significantly improves the performance of the baseline DEs. 

4.2. Benefits of the components in MLCC 

This subsection studies the advantages of the two components i.e. IPLS and RAB mechanisms designed in MLCC. Four

variants, denoted as Variants I-IV of MLCC-SI are constructed as follows. 

Variant-I: MLCC-SI without RAB. In this variant, at each generation, each individual can connect to only one layer based

on its preference. 

Variant-II : MLCC-SI without IPLS. In this variant, at each generation, the superior top G individuals connect to M layers

while the remains randomly connect to only one layer. 

Variant-III : MLCC-SI without IPLS and RAB. In this variant, at each generation, each individual randomly connects to only

one layer. 

Variant-IV : MLCC-SI without fitness bias. In this variant, the top G individuals permitted to connect to M layers are ran-

domly selected from the entire population without fitness bias. 

Parameter settings for these variants are set the same as those for MLCC-SI, as summarized in Section 4.1 . Their perfor-

mance comparisons with MLCC-SI are presented in Table S4 in the supplemental file and summarized in Table 6 . As shown

in Table 6 , MLCC-SI performs better than all the variants in both 30 and 50-dimensional cases. The effectiveness of RAB, IPLS,

the overall performance contributions by RAB and IPLS, and the benefit of fitness bias can be observed by comparing MLCC-

SI with Variants I-IV, respectively. To show further the performance improvements on the baseline DEs, the performance of

the four variants are also compared with SHADE and IDE, as shown in Tables S5-S8 in the supplemental file and Table 7 . It

can be seen that, with respect to the “−/ = / + ” results and P–N values, MLCC-SI exhibits higher improvements than the four

variants. Considering the total P–N values achieved by the five algorithms, Table 7 shows that MLCC-SI performs the best

with the maximum P–N value (62) while Variant-III without IPLS and RAB is the worst. 

It is interesting to investigate the individual preferences at different evolution stages. To this end, the entire searching

process is divided into several non-overlapping intervals, each consists of 50 generations. Fig. 6 plots the evolution of the

preference of four randomly selected initial individuals to the two layers SHADE and IDE in three typical 50-dimensional

CEC2014 benchmark functions, namely F13 (multimodal function), F17 (hybrid function) and F23 (composition function). It is

observed that (1) for function F13, Fig. 6 (a) indicates that the four individuals have quite different preferences. The relative
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Table 7 

Comparison results of MLCC-SI and its four variants with the baseline des on 

30- and 50-dimensional cec2014 benchmark set according to Wilcoxon signed- 

rank test with a significance level of 0.05. 

−/ = / + (P–N) v.s. D = 30 D = 50 Total P–N value 

Variant-I SHADE 12/11/7 (5) 18/5/7 (11) (37) 

IDE 13/13/4 (9) 18/6/6 (12) 

Variant-II SHADE 15/11/4 (11) 18/8/4 (14) (42) 

IDE 13/13/4 (9) 15/8/7 (8) 

Variant-III SHADE 13/11/6 (7) 16/9/5 (11) (25) 

IDE 9/15/6 (3) 15/4/11 (4) 

Variant-IV SHADE 14/9/7 (7) 18/6/6 (12) (41) 

IDE 14/11/5 (9) 18/7/5 (13) 

MLCC-SI SHADE 15/10/5(10) 22/4/4 (18) (62) 

IDE 16/13/1 (15) 21/7/2 (19) 

Fig. 6. Evolution of the relative percentage Pi processed by different layers of four randomly selected initial individuals on three 50-dimensional CEC2014 

benchmark functions F13, F17 and F23 in the median run. 

 

 

 

 

 

 

 

percentage P i processed by different layers of these four individuals varies at the same searching stages; (2) for function

F17, the individuals demonstrate similar preferences throughout the entire process ( Fig. 6 (b)); (3) for function F23, Fig. 6 (c)

shows that all the individuals favor more to the IDE layer at the early stage, but vary at the later stage. 

Fig. 7 (a) compares the average rank AR (defined in Section 3.3 ) of MLCC-SI with that of Variant-I, while Fig. 7 (b) shows

the AR of MLCC-SI, SHADE and IDE, for the thirty 50-dimensional CEC2014 functions. It is observed from Fig. 7 (a) that MLCC-

SI achieves smaller AR values than Variant-I on all the functions, which means that the RAB mechanism enables MLCC-SI

to focus more on superior individuals. Similarly, Fig. 7 (b) shows that MLCC-SI also achieves smaller AR values than SHADE

and IDE on all the functions except functions F3 and F8, which indicates that MLCC-SI emphasizes more on high-quality

solutions compared with SHADE and IDE. 
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Fig. 7. Average rank on thirty 50-dimensional CEC2014 benchmark functions: (a) MLCC-SI and Variant-I; (b) MLCC-SI, SHADE and IDE. 

Table 8 

Comparison results of different settings on 30-dimensional cec2014 

benchmark set according to Wilcoxon signed-rank test with a sig- 

nificance level of 0.05. 

−/ = / + −/ = / + 

Setting-I 2/27/1 Setting-IV 9/18/3 

Setting-II 2/26/2 Setting-V 4/25/1 

Setting-III 6/21/3 Setting-VI 11/15/4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3. Performance sensitivity to N 

This subsection investigates the performance sensitivity of MLCC-SI to its parameter N by comparing the standard MLCC-

SI with N = 0.05 with four other settings, i.e. Settings I-IV with N = 0.1, 0.2, 0.5 and 1.0, respectively. Besides, two more

settings, i.e. Settings V and VI with extreme settings of top G = 1 and top G = NP , respectively, are also considered. Performance

comparisons on 30-dimensional CEC2014 functions are tabulated in Table S9 and summarized in Table 8 . 

According to Table 8 , the followings can be concluded: (1) the performance of Settings-I and II are comparable to that

of MLCC-SI, implying that MLCC-SI is robust when N is small, such as 0.05, 0.1 or 0.2; (2) the performance of Settings III

and IV is inferior to that of MLCC-SI, indicating that N values that are too large will deteriorate the performance; (3) when

comparing the performance of Settings-V and VI with that of MLCC-SI, the cases for top G = 1 and top G = NP did not perform

as well as MLCC-SI. In general, a larger top G value enables more superior solutions to be improved. However, when top G
is too large, e.g. top G = NP in Setting-VI, the computation resources are again uniformly distributed and the performance

benefit less from evolving the inferior solutions. 

4.4. MLCC for multi-parameter strategy adaptation 

Very recently, Tanabe and Fukunaga [35] investigated the behavior and performance of different parameter adaptation

strategies [ 4 , 22 , 33 , 39 , 46 ] proposed in DE literature. They concluded, [35] by pointing out that “there is still significant room

for improvement in parameter adaptation methods for DE ”. 

Here, this subsection demonstrates the possibility of improving the performance of DE by the cooperation of multiple

parameter adaptation strategies under the proposed MLCC framework. The adaptive Success History-based Parameter Con-

figuration (SHA) originated from SHADE [33] and Self-adaptive Bimodal Distribution Parameter Scheme (BiD) derived from

CoBiDE [39] are considered due to their competitive performance and representative characteristics. Two baseline DEs, as-

signed to two layers are designed as follows: 

SHADE: the original SHADE algorithm [33] ; 

BiDE: SHADE with SHA replaced by BiD [39] . 

In this way, by comparing the performance of the MLCC variant, i.e. MLCC-SBi, with that of SHADE and BiDE, the effec-

tiveness of MLCC in multiple strategies adaptation can be observed. The pseudocode of MLCC-SBi is presented in Algorithm

S-2 in the supplemental file. Parameter settings for the algorithms are summarized as follows: 

(1) SHADE: NP = 5 × D , M F = {0.7}, M CR = {0.5}, and H = NP . 

(2) BiDE: NP = 5 × D. 
(3) MLCC-SBi: NP = 5 × D , M F = {0.7}, M CR = {0.5}, H = NP , and N = 0.05. 



100 S.X. Zhang, L.M. Zheng and K.S. Tang et al. / Information Sciences 482 (2019) 86–104 

Table 9 

Comparison results of MLCC-SBi with its baseline 

DE variants on 30- and 50-dimensional CEC2014 

benchmark set according to Wilcoxon signed-rank 

test with a significance level of 0.05. 

−/ = / + D = 30 D = 50 

SHADE 15/13/2 15/13/2 

BiDE 6/21/3 19/8/3 

Fig. 8. Distribution of the successful parameters F and CR generated by SHADE, BiDE, MLCC-SBi and RAB mechanism in MLCC-SBi on two 50-dimensional 

CEC2014 functions F15 and F17 in the median run. The darker, the higher frequency. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The experimental results on 30 and 50-dimensional CEC2014 test suite are presented in Table S10 and a summary is

given in Table 9 . As shown in Table S10 and Table 9 , MLCC-SBi performs significantly better than SHADE and BiDE in both

30 and 50-dimensional cases. Specifically, MLCC-SBi wins the baseline DEs in 55 ( = 15 + 15 + 6 + 19) cases and loses in 10

cases ( = 2 + 2 + 3 + 3). Moreover, Table 9 shows that the superiority of MLCC-SBi over BiDE is more significant in the 50-

dimensional case than in the 30-dimensional case. The reason is that SHA is not comparable to BiD. As shown in Table S11,

BiDE outperforms SHADE with the “−/ = / + ” result of “14/10/6” in the 30-dimensional case. However, when the problem

dimension increases to 50, the performance of BiD becomes comparable to that of SHA with “−/ = / + ” of “10/7/13”, as

indicated in Table S11. It should also be stressed that MLCC-SBi consistently exhibits better performance than both of the

baseline algorithms. The cases that MLCC-SBi loses to BiDE are functions F24, F25, and F29 in both 30 and 50 dimensions.

On the other functions, MLCC-SBi demonstrates significantly better or similar performance compared to BiDE. 

To investigate factors that contribute to the performance improvements, the distribution of successful parameters F and

CR associating with successful updates of the target vectors generated by SHADE, BiDE, MLCC-SBi and RAB mechanism in

MLCC-SBi on two 50-dimensional CEC2014 functions F15 and F17 are plotted in Fig. 8 . It can be seen that MLCC-SBi produces

more diverse successful parameters than single SHA and BiD. The successful parameters generated by RAB come from both

SHA and BiD, revealing that the proposed RAB mechanism simultaneously takes advantages of both schemes. To conclude,

MLCC provides an effective approach to integrate multiple parameter adaptation schemes. 

4.5. MLCC versus other framework 

To further demonstrate the superiority of the proposed MLCC framework, another very recently proposed hybrid DE

framework, called HDE [21] is compared. In HDE, two algorithms are performed alternatively according to their fitness

improvement rate. At each generation, only one algorithm is executed. When it did not perform well for several generations,

another would be used. In this subsection, HDE is applied to SHADE and IDE, SHADE and BiDE, respectively, denoted as H-SI

and H-SBi. Their performance are compared with those of MLCC-SI and MLCC-SBi, respectively. Parameter settings for the

HDE framework are set the same as recommended in the original literature, while parameter settings for the baseline DEs

and the MLCC framework are the same as those used previously in Sections 4.1 and 4.4 . 

As seen from Table S12 and Table 10 , MLCC framework exhibits better performance than HDE framework on both

30 and 50-dimensional functions. In the total of 120 cases, MLCC wins in 46 ( = 10 + 14 + 8 + 14) cases and loses in 14
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Table 10 

Comparison results of MLCC framework with HDE frame- 

work on 30- and 50-dimensional CEC2014 benchmark set 

according to Wilcoxon signed-rank test with a significance 

level of 0.05. 

−/ = / + D = 30 D = 50 

MLCC-SI v.s. H-SI 10/14/6 14/12/4 

MLCC-SBi v.s. H-SBi 8/19/3 14/15/1 

Table 11 

Comparison results of MLCCDE with start-of-the-art and up-to- 

date DE variants on 30- and 50-dimensional CEC2014 and CEC2017 

benchmark set according to Wilcoxon signed-rank test with a sig- 

nificance level of 0.05. 

−/ = / + CEC2014 CEC2017 

D = 30 D = 50 D = 30 D = 50 

jDE 20/8/2 22/6/2 21/9/0 23/5/2 

SaDE 27/3/0 29/1/0 26/4/0 27/3/0 

EPSDE 20/5/5 23/1/6 23/4/3 22/3/5 

JADE 18/10/2 21/4/5 22/6/2 21/4/5 

CoDE 15/11/4 22/4/4 15/13/2 23/6/1 

CoBiDE 13/14/3 22/4/4 15/10/5 24/4/2 

SinDE 16/9/5 18/7/5 18/10/2 19/5/6 

MPEDE 16/8/6 17/9/4 15/8/7 17/10/3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( = 6 + 4 + 3 + 1) cases. There may be two reasons that MLCC outperforms HDE. On the one hand, MLCC has the entire pop-

ulation monitored by multiple layers, which are performed simultaneously at each generation. Thus, individuals in MLCC

could quickly respond to the change of evolution stage. While on the other hand, the RAB mechanism proposed in MLCC

simultaneously takes advantages of multiple layers and also re-distributes the computation resources to help the algorithm

focus more on promising searching directions. 

4.6. Comparisons with State-of-the-Art and Up-to-Date DEs 

The effectiveness of the proposed MLCC framework have been verified in previous subsections. In this subsection, the

MLCCDE algorithm based on SHADE and IDE and the following parameter settings, is compared with eight well-known

state-of-the-art and up-to-date DEs, namely, jDE [4] , SaDE [29] , EPSDE [22] , JADE [46] , CoDE [38] , CoBiDE [39] , SinDE [9] and

MPEDE [44] . 

Parameter settings of MLCCDE: NP = 100 (for D = 30), NP = 150 (for D = 50), M F = {0.7}, M CR = {0.5}, H = NP , T = 10 0 0 D / NP ,

G T = 5 T , SR T = 0 ( G < G T ), SR T = 0.1 ( G ≥ G T ), and N = 0.05. 

It is noted that MLCCDE uses different NP settings from those of MLCC-SI. This is because MLCCDE empirically exhibits

better overall performance with these settings, as compared to other DE variants. Parameter settings for the compared DEs

are set the same as those given in their original literature. Here, the experiment also includes the recent CEC2017 test suite

[3] , in which several new functions are introduced. 

The performance comparisons on 30 and 50-dimensional CEC2014 and CEC2017 functions are reported in Tables S13

-S16, and the comparison results are summarized in Table 11 . 

From Table 11 , it can be observed that MLCCDE performs much better than the compared DEs. More specifically, in the

CEC2014 30-dimensional case, MLCCDE outperforms jDE, SaDE, EPSDE, JADE, CoDE, CoBiDE, SinDE and MPEDE in 20, 27,

20, 18, 15, 13, 16 and 16 functions and underperforms in 2, 0, 5, 2, 4, 3, 5 and 6 functions, respectively. In the CEC2014

50-dimensional case, MLCCDE wins jDE, SaDE, EPSDE, JADE, CoDE, CoBiDE, SinDE and MPEDE in 22, 29, 23, 21, 22, 22, 18

and 17 functions respectively and loses in far fewer functions. For the CEC2017 functions, MLCCDE also exhibits much better

performance than the compared DEs, as confirmed by the results in Table 11 . 

Considering multiple problems Wilcoxon’s test, Tables 12 and 13 show that MLCCDE consistently achieves much larger

R + than R- when compared with other DEs. The p -values obtained also confirm that MLCCDE significantly outperforms all

the compared DEs at α = 0.05. In addition, from the Friedman’s test results shown in Table 14 , MLCCDE achieves the smallest

ranking values of 2.78 and 2.49 on CEC2014 and CEC2017 functions, respectively. 

4.7. Flexibility of MLCC 

To further demonstrate the flexibility of the framework, two experiments were designed as follows. 

In the first experiment, an example of utilizing MLCC to incorporate three optimizers is presented. The three previously

used algorithms, i.e. SHADE, IDE and BiDE are considered. It is noticed that SHADE and BiDE share some similarities as they
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Table 12 

Comparison results of MLCCDE with start-of-the-art and up-to-date 

DE variants on 30- and 50-dimensional CEC2014 benchmark set ac- 

cording to multi-problem Wilcoxon’s test. 

MLCCDE v.s. R + R − p- value α = 0.05 

jDE 1485.5 284.5 6.00E − 06 Yes 

SaDE 1765.5 4.5 0.00E + 00 Yes 

EPSDE 1372.5 397.5 2.30E − 04 Yes 

JADE 1388.0 382.0 1.44E − 04 Yes 

CoDE 1657.0 173.0 0.00E + 00 Yes 

CoBiDE 1407.0 423.0 2.88E − 04 Yes 

SinDE 1384.0 386.0 1.63E − 04 Yes 

MPEDE 1275.5 494.5 3.16E − 03 Yes 

Table 13 

Comparison results of MLCCDE with start-of-the-art and up-to-date 

DE variants on 30- and 50-dimensional CEC2017 benchmark set ac- 

cording to multi-problem Wilcoxon’s test. 

MLCCDE v.s. R + R − p- value α = 0.05 

jDE 1764.0 66.0 0.00E + 00 Yes 

SaDE 1737.0 33.0 0.00E + 00 Yes 

EPSDE 1607.5 222.5 0.00E + 00 Yes 

JADE 1588.0 242.0 1.00E − 06 Yes 

CoDE 1700.5 69.5 0.00E + 00 Yes 

CoBiDE 1578.0 252.0 1.00E − 06 Yes 

SinDE 1469.5 300.5 1.00E − 05 Yes 

MPEDE 1413.0 417.0 2.43E − 04 Yes 

Table 14 

Overall performance ranking of all the considered DEs on 

30 and 50-dimensional CEC2014 and cec2017 benchmark 

set by Friedman’s test. 

CEC2014 CEC2017 

Algorithm Ranking Algorithm Ranking 

MLCCDE 2.78 MLCCDE 2.49 

MPEDE 4.21 MPEDE 3.86 

CoBiDE 4.46 CoBiDE 4.73 

JADE 4.85 JADE 4.78 

SinDE 4.99 SinDE 4.84 

CoDE 5.06 CoDE 5.40 

jDE 5.10 jDE 5.76 

EPSDE 6.13 SaDE 6.33 

SaDE 7.38 EPSDE 6.77 

Table 15 

Comparison results of MLCC-SIBi with its baseline 

DE variants on 30- and 50-dimensional CEC2014 

benchmark set according to Wilcoxon signed-rank 

test with a significance level of 0.05. 

−/ = / + D = 30 D = 50 

SHADE 16/9/5 20/8/2 

IDE 15/11/4 16/10/4 

BiDE 9/15/6 20/9/1 

 

 

 

 

 

 

 

adopt the same mutation strategy. The pseudocode of MLCC-SIBi is given in Algorithm S-3 in the supplemental file. Param-

eter settings for the algorithms are set the same as used in Sections 4.1 and 4.4 . As observed in Table S17 and Table 15 ,

the MLCC variant MLCC-SIBi exhibits better performance compared to the baseline DEs. More specifically, MLCC-SIBi per-

forms better in 40 ( = 16 + 15 + 9) cases and underperforms in 15( = 5 + 4 + 6) cases on the 30-dimensional functions. For the

50-dimensional case, MLCC-SIBi wins in 56( = 20 + 16 + 20) functions and loses in 7( = 2 + 4 + 1) functions. 

In the second experiment, MLCC was extended to incorporate the L -SHADE [34] algorithm with linear population size

reduction (LPSR). To this end, L -SHADE and M_IDE, are assigned to the two layers, respectively. M_IDE is a modified version

of IDE with the original parameter strategy replaced by the success history-based parameter adaption (SHA) [33] . The reason

for this strategy replacement is that performance of the original parameter strategy in IDE degrades with the LPSR scheme. 
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Table 16 

Comparison results of MLCC- l -SI with its baseline DE 

variants on 30- and 50-dimensional CEC2014 bench- 

mark set according to Wilcoxon signed-rank test with 

a significance level of 0.05. 

−/ = / + D = 30 D = 50 

L-SHADE 7/20/3 11/13/6 

M_IDE 19/7/4 23/3/4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The graphic illustration and pseudocode of the resulting MLCC- L -SI variant are shown in Fig. S1 and Algorithm S-4 in the

supplemental file, respectively. 

Parameter settings for the algorithms are summarized as follows. 

(1) L-SHADE: NP init = 20 × D , M F = {0.7}, M CR = {0.5}, and H = 5. 

(2) M_IDE: NP = 5 × D , M F = {0.7}, M CR = {0.5}, and H = NP . 

(3) MLCC- l -SI: NP init = 20 × D , M 

LSHA 
F = {0.7}, M 

LSHA 
CR = {0.5}, H 

LSHA = 5 (For l -SHADE layer), NP M_ IDE = 5 × D,

M 

M_ IDE 
F = {0.7}, M 

M_ IDE 
CR = {0.5}, H 

M_ IDE = 5 (For M_IDE layer), and N = 0.05. 

Remark: In our experiment, M_IDE maintains a fixed population size NP to ensure good performance and the history

length H is set to the population size NP , as recommend in SHA [33] . While in MLCC- L -SI, the population size of the M_IDE

layer NPT G is fixed at 5 × D when the current population size NP G ≥ 5 × D . However, when NP G < 5 × D, NPT G is also adjusted

according to the LPSR scheme, as shown in Fig. S1. Thus, the history length H 

M_IDE is set the same as H 

LSHA for simplicity. 

As shown in Table S18 and Table 16 , MLCC- L -SI exhibits better performance than the constituent algorithms, winning

in 60 ( = 7 + 19 + 11 + 23) cases and losing in 17 ( = 3 + 4 + 6 + 4) cases. It is also observed that the superiority of MLCC- L -SI

over M_IDE is more significant than over L -SHADE. The reason lies in that the performance of M_IDE is significantly inferior

to that of L -SHADE, as shown in Table S18. Nevertheless, MLCC- L -SI still achieves better performance compared to L -SHADE.

5. Conclusion 

In this paper, a multi-layer competitive-cooperative (MLCC) framework with a new parallel structure is proposed. The

framework can effectively incorporate multiple competitive DE variants and combine their advantages. As a result, the de-

sign outperforms all of the constituents. MLCC consists of two components, namely the individual preference layer selecting

(IPLS) mechanism and the resource allocation bias (RAB) scheme. The IPLS allows bidirectional information communication

between population and multiple adaptive optimizers assigned in multiple layers, making the optimizers work in a collabo-

rative manner. The RAB provides an effective resource allocation, to promote the searching capability. The effectiveness and

advantages of the MLCC framework as well as its components are confirmed by comprehensive experiments carried out on

the CEC benchmark functions. 

In this study, mainly two or three DE methods are incorporated into MLCC. We suggest some heuristic ways to demon-

strate how these methods are selected. However, it is still open as to how best determine the set of methods. Moreover, it

will be interesting to see how the proposed framework can be extended to other EAs, which is another direction for future

work. 

The MATLAB code of MLCC can be downloaded from https://zsxhomepage.github.io/. 
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