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A B S T R A C T   

Performance of differential evolution, which is one of the most competitive evolutionary algorithms, heavily 
depends on the utilization of feedback information. The feedback information can be from objective, solution and 
dimension spaces. To facilitate the better utilization of feedbacks for performance enhancements, this paper 
proposes an objective-dimension feedback (ODF) method with two novel mechanisms to, respectively take ad-
vantages of dimension and objective space knowledge. The first mechanism, named “Small diversity dimensions 
exploit, Large diversity dimensions explore” classifies dimensions into exploitation and exploration dimensions 
according to their diversity rankings and assigns them with collective and single dimensional learning strategies, 
respectively. The second mechanism, named “number of dimensions automatic configuring” automatically 
configures the number of dimensions performing exploitation and exploration in each solution according to its 
fitness ranking. Experiments on 29 benchmark functions confirm the effectiveness of ODF by performance 
comparisons with single utilization of objective and dimension space knowledge, single utilization of dimen-
sional learning strategies and several objective, solution and dimension space knowledge-based methods from 
literatures.   

1. Introduction 

The No Free Lunch theorem [1] states that on average, all algorithms 
perform similarly on all problems. However, in practice, we usually 
consider one specific or a specific kind of problems. A target real-world 
problem usually has certain structures for an algorithm to learn. The 
better an algorithm learns to fit the problem, the better performance it 
might achieve. The quality of learning depends on the sufficiency of 
learning sources and the design of learning methods. 

As an efficient global optimizer, differential evolution (DE) [2–7] 
evolves a group of solutions with three typical genetic operations, 
including differential mutation, dimension-wise crossover and 
one-to-one selection. In the past two decades, researchers have 
improved its performance by designing various learning methods for 
mutation strategies [8–14] as well as control parameters [15–23]. For 
learning, the source data can be objective space knowledge (OSK), so-
lution space knowledge (SSK) and dimension space knowledge (DSK). 
OSK describes the information collected based on fitness, such as the 
fitness comparison of parent and offspring and the fitness ranking of 
solutions. SSK estimates the distribution of solutions with the consid-
eration of all dimensions as a unity, such as the distance among 

solutions. While DSK refers to the information derived from the 
dimension level of solutions, such as the dimension correlation and 
dimension difference. 

In DE, the success/fail of mutation strategy and control parameters 
can be observed from the parent-offspring one-to-one fitness compari-
son. This kind of OSK has been widely applied for constructing DE al-
gorithms, such as SaDE (strategy adaptive DE) [9], jDE (Janez’s DE) 
[15], JADE (Jingqiao and Arthur ’s DE) [8], SHADE (success-history 
adaptive DE) [16], GLCDE (global-local cooperative DE) [24], CSDE 
(cooperative strategy-based DE) [25], L-SHADE (SHADE with linear 
population size reduction) [17] and its improved variants [26–29]. With 
the population feature, OSK in DE can also be the fitness ranking. Fitness 
ranking has also been used for improving DE, such as rank-DE (ran-
king-based mutation for DE) [10], IDE (individual dependent DE) [20], 
CIPDE (collective information powered DE) [12] and DSNDE (dynamic 
scale-free network-based DE) [30]. SSK has been used for offspring 
generation [31] and mutation [32]. DSK has been utilized for improving 
DE’s crossover by considering the dimension correlation [33] and the 
enhancement of population diversity by considering the dimension 
convergence [34]. It is observed that in OSK-based methods, DSK is 
usually neglected and vice versa. Fully utilizing OSK and DSK may be 
beneficial to learn problem characteristics and improve the 
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performance. 
This paper proposes an objective-dimension feedback (ODF) method 

with two novel mechanisms for better utilization of DSK and OSK, 
respectively. The first mechanism, named “Small diversity dimensions 
exploit, Large diversity dimensions explore” (SEiLEr) evaluates the 
evolution differences of dimensions and assigns the diversity rankings. 
Dimensions with small diversity perform an exploitative search by 
collectively learning from the corresponding dimensions of multiple 
fittest solutions while dimensions with large diversity perform an 
explorative search by single learning from dimension of fittest solutions. 
The second mechanism, named “number of dimensions automatic 
configuring” (NDAC) takes advantages of OSK to determine the number 
of dimensions performing exploitative search to improve convergence or 
explorative search to alleviate local minima in each solution by utilizing 
its fitness ranking. 

Fig. 1 illustrates the differences in strategy assignment among 
existing OSK-, DSK-based methods and the ODF method. In the OSK- 
based method [9,20] (subplot (a)), the same strategies are distributed 
to all the D dimensions without considering the dimension differences (i. 
e. DSK is neglected). In the DSK-based method [34] (subplot (b)), an 
exploitative strategy is first performed for all the dimensions, then some 
of the dimensions will perform a diversity enhanced explorative strategy 
when they converge or stagnate. OSK is not considered to make strategy 
assignment differences among individuals. While in the proposed 
ODF-based method (subplot (c)), the assignment of strategies depends 
on both the fitness ranking of individuals and the diversity ranking of 
dimensions (Details will be given in Section III). Consequently, strate-
gies are distinguishable among both dimensions and individuals and the 
amount of exploitation and exploration could be adjusted in different 
dimensions and individuals. Moreover, ODF includes new mechanisms 
for better utilization of DSK and OSK, as will be introduced in Section III. 

The main contributions of this paper can be summarized as follows: 

(1) For the utilization of DSK and OSK, SEiLEr and NDAC mecha-
nisms are, respectively designed. ODF thus distributes strategies 
by simultaneously taking advantage of DSK and OSK, which is 
significantly different from existing methods. 

(2) Collective and single dimensional learning strategies are pro-
posed for the cooperation of exploitation and exploration in a 
single solution but different dimensions.  

(3) Benefits of the proposed SEiLEr and NDAC mechanisms, the 
dimensional learning strategies and the simultaneous consider-
ation of DSK and OSK are verified by experiments conducted on 
29 CEC2017 benchmark functions [35]. The working mecha-
nisms are also investigated and explained. 

Nomenclature 

OSK Objective space knowledge 
SSK Solution space knowledge 
DSK Dimension space knowledge 
ODF Objective-dimension feedback 
SEiLEr Small diversity dimensions exploit, Large diversity 

dimensions explore 
NDAC Number of dimensions automatic configuring 
CDL Collective dimensional learning 
SDL Single dimensional learning  

Fig. 1. Illustration of strategy assignment in OSK-, DSK- and ODF-based methods to a population with NP D-dimensional individuals. 
Ei: Exploitative, Er: Explorative. 
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The rest of this paper is organized in order. Section 2 presents a re-
view of related works with the utilization of different kinds of knowl-
edge. Section 3 describes the proposed method in details. The 
experimental results and discussions are presented in Section 4. Finally, 
Section 5 concludes this paper. 

2. Literature review 

In this section, we first describe the classic DE algorithm. Following, 
related works on multi-strategy DE with utilization of OSK, SSK and DSK 
are reviewed with a summary presented in Table 1. 

2.1. DE 

Constructed based on the population concept, DE explores a search 
space by iteratively performing three genetic operations, i.e. mutation, 
crossover and selection. 

At the beginning, i.e. generation G = 0, a population PG = { x→1,G,

x→2,G,⋯, x→NP,G}with NP D-dimensional individuals is randomly sampled 
from the search space. 

Mutation: DE mutates an individual by adding one or more differ-
ential vectors to a basic vector. Some widely used mutation strategies 
include: 

DE/rand/1: 

v→i,G = x→r1 ,G + F
(

x→r2 ,G − x→r3 ,G

)

(1) 

DE/best/1: 

v→i,G = x→best,G + F
(

x→r1 ,G − x→r2 ,G

)

(2) 

DE/current-to-best/1: 

v→i,G = x→i,G + F
(

x→best,G − x→i,G

)

+ F
(

x→r1 ,G − x→r2 ,G

)

(3)  

where r1, r2 and r3 are three random integers from{1,2,⋯,NP}and are 
mutually different. x→best,G is the best solution in the current population 
and F is a scaling factor within (0,1]. 

Crossover: Following mutation, crossover is performed on each 
mutant individual v→i,Gand its corresponding target individual x→i,G to 
generate a trial individual u→i,G. The classic crossover operation is as 
follows: 

ui,j,G =

{
vi,j,G if randj(0, 1) ≤ CR or j = jrand
xi,j,G otherwise (4)  

where randj (0,1) is a uniformly sampled random number within (0,1), 
jrand is a random integer from {1,2,⋯,D} and CR is a crossover factor 
within [0,1]. 

Selection: DE selects offspring by comparing the fitness of each pair 
of trial and target individuals. The fitter one (for minimization problem 
is the one with smaller fitness value) is selected into the next generation, 
as follows: 

x→i,G+1 =

⎧
⎪⎨

⎪⎩

u→i,G if f
(

u→i,G

)

≤ f
(

x→i,G

)

x→i,G otherwise
(5)  

2.2. Multi-strategy DE with utilization of OSK 

With the parent-offspring competition feature of DE, OSK can be the 
success/fail replacement of parent (denoted as SFR). This knowledge has 
been widely applied to strategy combination [36], strategy selection 
[37] and strategy adaptation [38–48]. In DEGL (DE with global and local 
strategies) [36], global and local mutation strategies are combined using 
a weighting factor. Settings of the weighting factor are adaptive based 
on SFR. In SaDE (strategy adaptive DE) [9], selection probabilities of 
mutation strategies are dynamically adjusted based on their success/fail 
history. In SaM (strategy adaptive mechanism) [38], index of mutation 
strategies is treated as a control parameter and adaptively adjusted using 

Table 1 
Literature review of multi-strategy DEs with utilization of OSK, SSK and DSK.  

Year Method For component(s) of DE Utilized 
knowledge 

Year Method For component(s) of DE Utilized 
knowledge 

2009 DEGL [36] mutation strategy OSK/SFR 2017 IDEI [49] mutation strategy and control 
parameter 

OSK/FR 

2009 SaDE [9] mutation strategy OSK/SFR 2018 HHDE [50] mutation strategy and control 
parameter 

OSK/SFR+FR 

2010 SaM [38] mutation strategy OSK/SFR 2018 MTDE [54] offspring generation strategy OSK/FR 
2011 Adap_SS [39] mutation strategy OSK/SFR 2018 L-SHADE-RSP  

[27] 
mutation strategy OSK/FR 

2011 EPSDE [43] mutation strategy and control 
parameter 

OSK/SFR 2019 NDE [53] mutation strategy OSK/FR 

2011 CoDE [37] mutation strategy and control 
parameter 

OSK/SFR 2022 DSNDE [30] mutation strategy OSK/FR 

2013 ISAMODECMA  
[42] 

mutation and crossover strategies OSK/SFR 2019 MLCC [51] mutation strategy and control 
parameter 

OSK/SFR+FR 

2013 FRRMAB [40] mutation strategy OSK/SFR 2008 ODE [31] offspring generation strategy SSK 
2015 SPS [45] parent selection OSK/SFR 2012 N-DE [32] mutation strategy SSK 
2016 ZEPDE [44] mutation strategy and control 

parameter 
OSK/SFR 2015 EIG [33] crossover strategy DSK 

2016 MPEDE [41] mutation strategy OSK/SFR 2015 AEPD [34] offspring generation strategy DSK 
2017 ETI [46] offspring generation strategy OSK/SFR+FR 2015 CSM [55] mutation strategy OSK+SSK 
2017 MVC [47] mutation strategy and control 

parameter 
OSK/SFR 2016 MPADE [56] mutation strategy OSK+SSK 

2018 ACoS [48] crossover strategy OSK/SFR 2017 UMDE [57] mutation strategy OSK+SSK 
2021 CSDE [25] mutation strategy and control 

parameter 
OSK/SFR 2018 UMS [58] mutation strategy OSK+SSK 

2015 IDE [20] mutation strategy and control 
parameter 

OSK/FR 2019 TOAs [59] mutation strategy OSK+SSK 

2016 TS [52] mutation strategy OSK/FR 2020 SCSS [60] mutation strategy and control 
parameter 

OSK+SSK 

SFR: Success/fail replacement of parent, FR: Fitness ranking. 
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parameter control methods in [8,15]. These parameter control methods 
are commonly based on SFR. In Adap_SS (adaptive strategy) [39], 
probabilities of mutation strategies are calculated by probability 
matching and adaptive pursuit techniques. In FRRMAB (fitness-rate-r-
ank-based multiarmed bandit) [40], mutation strategies compete based 
on multi-armed bandits. In MPEDE (multi-subpopulation ensemble DE) 
[41], SFR is used to adjust the sizes of subpopulations for mutation 
strategies. In ISAMODECMA (improved self-adaptive multi-operator DE) 
[42], SFR is used for allocating mutation and crossover strategies. 
EPSDE (DE with ensemble of parameter and strategy) [43] uses SFR to 
distribute mutation strategies and control parameters for each individ-
ual. ZEPDE (DE with zoning evolution of parameters) [44] employs SFR 
to assign appropriate mutation strategies and control the zoning evo-
lution of parameters. CoDE (composite DE) [37] uses fitness information 
to select the fittest offspring from three candidates generated by three 
pairs of mutation strategies and parameters. SPS (successful-par-
ent-selecting) [45] utilizes SFR to identify the stagnation of solutions 
and choose different parent selection methods. With SFR, ETI (even-
t-triggered impulsive) [46] calculates the success rate of population. 
When success rate decreases to a small value, two kinds of impulses are 
triggered on superior and inferior individuals, respectively. With SFR, 
MVC (multi-variant coordination) [47] calculates the contributions of 
different DE algorithms and adaptively assigns DE at different evolution 
stages. With SFR, ACoS (adaptive coordinate system) [48] estimates the 
suitability of two coordinate systems. 

With the population structure of DE, OSK can also be the fitness 
ranking (FR) of solutions. FR has been used to distribute mutation 
strategies and control parameters [49–54]. In IDE (individual dependent 
DE) [20], IDEI (improved individual dependent DE) [49], HHDE (his-
torical and heuristic-based DE) [50] and MLCCDE (multi-layer 
competitive-cooperative DE) [51], individuals are evolved with strate-
gies and parameters determined by their FR. In TSDE (two-step strategy 
DE) [52] and NDE (adaptive neighborhood DE) [53], strategies are 
assigned to subpopulations according to FR. In MTDE (multi-topology 
DE) [54], offspring is generated by individual fitness dependent topol-
ogy. In DSNDE (dynamic scale-free network-based DE) [30], FR is used 
to construct a scale-free network, which determines the selection of 
solutions for mutation. 

2.3. Multi-strategy DE with utilization of SSK or DSK 

SSK originates from the distribution of NP D-dimensional solutions, 
which usually treats the D dimensions as a whole. Difference among 
dimensions is not considered. In ODE (opposition-based DE) [31], a new 
offspring generation method, named opposition-based learning (OBL) 
was proposed for population initialization and generation jumping. OBL 
generates opposite solutions by using the current solutions and the 
bounds of search space. In N-DE (neighborhood mutation DE) [32], 
mutation is performed within each Euclidean neighborhood, which is 
constructed based on distances among solutions. 

While DSK takes the correlation or difference among dimensions into 
consideration. In EIG (eigenvector-based crossover operator) [33], 
covariance matrix is computed by using the dimensional information of 
population. In AEPD (auto-enhanced population diversity) [34], distri-
bution of each dimension is calculated at each generation. Dimensions 
will be diversified when they converge or stagnate. 

2.4. Multi-strategy DE with utilization of OSK and SSK 

In CSM (cheap surrogate model-based multi-operator search) [55], 
density is computed by using distances among individuals. In order to 
make fitter solutions contribute more, fitness ranking information is also 
used for the calculation of density. In MPADE (multiple sub-populations 
adaptive DE) [56], solutions for mutation are selected with the consid-
eration of their solution space distances. Besides, different mutation 
strategies are assigned to sub-populations with different fitness values. 

In UMDE (underestimation assisted multistage DE) [57], abstract 
convex underestimation (ACUM) which is used to estimate the evolution 
stage, is constructed based on fitness and the distribution of solutions in 
solution space. In UMS (underestimation-based multimutation strategy) 
[58], cheap ACUM is employed to filter an offspring from multiple 
candidates. In TOAs (team of optimization algorithms) [59], solution 
quality is measured by combining fitness difference with solution space 
distance to the optimal solution. In SCSS (selective candidate with 
similarity selection rule) [60], multiple candidates are sampled for each 
current solution with different strategies and control parameters. The 
final candidate is selected based on the fitness ranking of the current 
solution and its solution space distance to the corresponding candidates. 

To summarize, the above methods are tabulated in Table 1. 

3. Proposed method 

3.1. Motivation 

DE, as a classic evolutionary algorithm, evolves a group of NP 
candidate solutions. Each solution could prefer a certain evolution di-
rection, i.e. to exploit or to explore based on its current status. Further, 
for each solution, exploitation and exploration needs may be different 
for the D dimensions. Therefore, it is necessary to detect the charac-
teristic of dimensions, classify and assign them with appropriate 
exploitation and exploration search strategies, which is the focus of this 
paper. 

For black-box optimization, an appropriate assignment of strategies 
requires sufficient utilization of the feedbacks from both objective and 
decision spaces. On the one hand, strategies have been assigned to so-
lutions at the individual level [20, 49–54]. However, since the optimi-
zation of D dimensions may be asynchronous, a single strategy may not 
be suitable for all the D dimensions. A typical class of such kind of 
functions is the hybrid function [35], in which variables are randomly 
divided into several groups with each group associated with a different 
basic function. Since the basic functions have different degree of diffi-
culties and thus some dimensions of the hybrid function are relatively 
easy to optimize while the others are relatively difficult. Therefore, to 
measure differences at the dimension level and allocate appropriate 
exploitation and exploration strategies for various dimensions could 
improve the performance. On the other hand, at the population level, 
the amount of exploitation and exploration needs in solutions might 
vary according to their status (e.g. fitness) in the population. Thus, the 
number of dimensions performing exploitation and exploration in each 
solution should be configured. 

With the above considerations, this paper proposes the objective- 
dimension feedback (ODF) method with two novel mechanisms, 
namely SEiLEr and NDAC which simultaneously merges DSK with OSK. 
Further, to meet different search requirements in different dimensions, 
exploitative collective dimensional learning strategy which merges the 
dimension information of multiple promising solutions and explorative 
single dimensional learning strategy which learns from single dimension 
are proposed to implement a dimension level search strategy adaptation. 
They are described in the following subsections step by step. 

3.2. Utilization of DSK in ODF: SEiLEr mechanism 

In real-world optimization problems, different subcomponents of 
variables may have different properties [35]. To detect their properties 
and better assign exploitative or explorative search strategies, the 
SEiLEr (“Small diversity dimensions exploit, Large diversity dimensions 
explore”) mechanism is proposed. The working flows are as follows: 
From the beginning, diversity of each dimension j at each generation G is 
calculated as 

dj,G =
1

NP
∑NP

i=1

(
xi,j,G − xj,G

)2
(6) 
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where xj,G = (1 /NP)
∑NP

i=1xi,j,G is the center of the j-th dimension. Af-
terwards, dj,G {j = 1, 2,…, D} is sorted in ascending order and assigned a 
diversity ranking value Rdj, G from{1,2,⋯,D}, as shown in Eq. (7), 

Rdj,G←sort
(
dj,G

)
(7) 

Consequently, Rdj, G = 1 is for the dimension with the smallest di-
versity while Rdj, G = D is for the one with the largest diversity, as 
illustrated in Fig. 2. 

In principle, dimensions with Small Rdj, G values will perform an 
exploitative dimensional search while those with Large Rdj, G values will 
perform an explorative dimensional search. It is based on the following 
considerations. Small diversity dimensions converge faster, implying 
that they may be relatively easy to optimize. For hybrid functions, these 
dimensions may come from the relatively simple functions, thus, they 
are consistently assigned exploitation task to benefit convergence. While 
for dimensions with large diversity, the large diversity indicates that 
they are relatively hard to converge, therefore they are assigned 
exploration task to help maintain population diversity. Consequently, 
SEiLEr mechanism classifies dimensions into exploitation and explora-
tion dimensions. 

For demonstration, an illustrative experiment was conducted on the 
SHADE [16] algorithm with the SEiLEr mechanism on ten 30-D 
CEC2017 hybrid functions F11-F20 [35]. Each hybrid function con-
sists of several groups of variables with each group associated with one 
basic function. The number of groups and the number of variables in 
each group are shown in Table 2 while the basic function in each group 
is shown in Table 3. In our methodology, Rdj, G of each dimension j at 
each generation was recorded and finally the average ranking value aRdj 
of each dimension j over the entire evolution process was obtained. 
According to SEiLEr (i.e. small ranking value dimensions assigned an 
exploitative task while large ranking value dimensions assigned an 
explorative task) and assuming that the exploitative and explorative 
percentages are both 50%, i.e. half of the dimensions with ranking 
values smaller than D/2 performs an exploitative task while the rest 
performs an explorative task. Then, statistically, dimension j with aRdj 
< D/2 is mainly assigned an exploitative task while dimension j with 
aRdj > D/2 is mainly assigned an explorative task. Therefore, in each 

group, we know which dimensions perform an exploitative task and 
which dimensions perform an explorative task. The exploitative task 
ratio REi and explorative task ratio REr within each group can be, 
respectively calculated as the number of dimensions performing 
exploitative and explorative tasks divided by the total number of di-
mensions within the group. The larger value L of REi and REr is defined as 
the homogeneity in the group. L value and the corresponding task are 

Fig. 2. An example of assigning ranking to dimension according to its relative diversity.  

Table 2 
The ten 30-D cec2017 hybrid functions F11-F20 [35].  

Fun. Number of 
groups 

Number of 
variables in each 
group 

Fun. Number of 
groups 

Number of 
variables in each 
group 

F11 3 (6, 12, 12) F16 4 (6, 6, 9, 9) 
F12 3 (9, 9, 12) F17 5 (3, 6, 6, 6, 9) 
F13 3 (9, 9, 12) F18 5 (6, 6, 6, 6, 6) 
F14 4 (6, 6, 6, 12) F19 5 (6, 6, 6, 6, 6) 
F15 4 (6, 6, 9, 9) F20 6 (3, 3, 6, 6, 6, 6)  

Table 3 
Basic function in each group of the hybrid functions [35].  

Fun. Group index 

1 2 3 4 5 6 

F11 f2 f3 f4 NA NA NA 
F12 f8 f7 f1 NA NA NA 
F13 f1 f3 f6 NA NA NA 
F14 f8 f10 f16 f4 NA NA 
F15 f1 f14 f4 f3 NA NA 
F16 f5 f14 f3 f7 NA NA 
F17 f12 f10 f15 f7 f4 NA 
F18 f8 f10 f4 f14 f9 NA 
F19 f1 f4 f15 f11 f5 NA 
F20 f13 f12 f10 f4 f7 f16 

Unimodal basic functions f1: Bent Cigar; f2: Zakharov; f8: High Conditioned 
Elliptic; f9: Discus; Multimodal basic functions f3: Rosenbrock; f4: Rastrigin; 
f5: Expanded Schaffer’s F6; f6: Lunacek bi-Rastrigin; f7: Modified Schwefel; f10: 
Ackley; f11: Weierstrass; f12: Katsuura; f13: HappyCat; f14: HGBat; f15: 
Expanded Griewank plus Rosenbrock; f16: Schaffer’s F7; NA: Not available. 
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reported in Table 4. 
With respect to the L value, it can be seen from Table 4 that in most 

(more than half) of the groups, L reaches 100%. We know that if 
exploitative and explorative tasks are randomly assigned to the di-
mensions, then, take a group with 12 dimensions (F11, Group 2) for 
example, L value is likely to be near 50%. The probability to be 100% is 
(1 + 1)/212 = 1/2048, which is quite small. However, with SEiLEr, from 
Table 4, L is 100%. Thus, it is concluded that SEiLEr significantly in-
creases the homogeneity of exploitative and explorative tasks within 
each group. 

With respect to the type of functions, from Tables 3 and 4, it is 
observed that for the group with relatively simple basic function, 
including Bent Cigar (f1), Zakharov (f2), High Conditioned Elliptic (f8) 
and Discus (f9) functions with unimodal feature, they are consistently 
assigned with mainly the exploitation task (highlighted with gray 
background in Table 4), indicating that SEiLEr correctly detects the 
dimension difficulty. The optimization performance of SEiLEr on hybrid 
functions will be further demonstrated by comparative experiments in 
Section 4.3. 

The pseudo-code of SEiLEr is shown in Algorithm 1. The parameter 
NoD (Number of Dimensions) in line 4 is calculated according to OSK, as 
will be introduced in Section 3.3. The exploitative collective dimen-
sional learning (line 5) and explorative single dimensional learning (line 
7) will be described in Section 3.4. 

From the above descriptions, it is seen that SEiLEr is significantly 
different from AEPD [34], as summarized in the following three aspects:  

(1) The working mechanism and trigger condition are different. 
AEPD triggers exploration when dimensions converge or stag-
nate. While SEiLEr performs exploitation on small diversity 

dimensions and exploration on large diversity dimensions and 
works from the beginning of the optimization. AEPD acts in a 
passive way while SEiLEr is an active way.  

(2) AEPD measures the diversity of dimensions in isolation with the 
relative diversity among dimensions being neglected. Specif-
ically, a threshold parameter was introduced in AEPD to decide 
whether a dimension converges/stagnates or not. While SEiLEr 
evaluates the relative diversity among dimensions by the sorting 
and ranking operations. 

(3) SEiLEr takes advantages of OSK to adjust the amount of exploi-
tation and exploration in dimension while AEPD does not as 
AEPD merely utilizes the convergence information of the 
dimension value. 

3.3. Utilization of OSK in ODF: NDAC mechanism 

The proposed number of dimensions automatic configuring (NDAC) 
mechanism works as follows: From the beginning, solutions in the 
population Pi, G {i = 1, 2 , …, NP} are sorted from the best to the worst 
and assigned fitness ranking values Rfi, G from 1 to NP. Rfi, G is used to 
determine the number of dimensions performing CDL/SDL, i.e. the 
parameter NoD in Algorithm 1 (line 4), as calculated in the followings: 

NoD = min
(
floor

(
Rfi,G ×Dα /NP

)
,D

)
(8)  

α = 1 + 2 × FES/Max FES (9)  

where floor (⋅) denotes a floor value, min (a, b) is a smaller value of a and 
b, FES is the currently consumed function evaluations while Max_FES is 
the maximum number of evaluations. From these equations, the 
following principles can be observed:  

(1) The setting of NoD is associated with the dimensionality D and 
population size NP to distribute the D dimensions to the NP 
individuals. 

(2) Inferior solutions with large Rfi, G values are assigned more di-
mensions encouraging exploitation to help them jump out from 
inferior dimension values.  

(3) With α, at the early evolution stage, NoD is relatively small to 
encourage exploration, but as the evolution goes on, more and 
more dimensions will perform an exploitative strategy. Fig. 3 
shows NoD against Rfi with different FES values when NP=100 
and D = 30. It can be seen that at the beginning (blue line), NoD 

Table 4 
Homogeneity and corresponding task in each group with SEiLEr method.  

Algorithm 1 
SEiLEr.  

1: Sort dimensions according to diversity and store the ranking values in Rdj, G {j 
= 1, 2, …, D}; 

2: For i = 1: NP 
3: For j = 1: D 
4: If Rdi,j,G < NoD // NoD: Number of Dimensions 
5: Perform exploitative collective dimensional learning (CDL) on 

dimension j; 
6: Else 
7: Perform explorative single dimensional learning (SDL) on dimension j; 
8: End If 
9: End For 
10: End For  Fig. 3. NoD against Rfi with different FES values.  
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increases with Rfi while at the final generation (red line), NoD is D 
(i.e. 30) for all the solutions. 

Combining SEiLEr with NDAC, pseudo-code of the proposed ODF 
method is shown in Algorithm 2. ODF is further illustrated in Fig. 4. 
From Figs. 3 and 4, it is seen that the choice of an exploitative/explor-
ative strategy for each dimension is cooperatively determined by the 
dimension diversity ranking, the fitness ranking and the current evolu-
tion stage. The individual contribution of DSK and OSK will be identified 
by experiments in Section 4.2. 

3.4. Collective and single dimensional strategies 

The collective and single dimensional learning strategies included in 
Algorithm 2 (lines 7 and 9) are described as follows. 

Collective dimensional learning (CDL): CDL consists of collective 

mutation and collective crossover. The population PG is first sorted ac-
cording to fitness from best to worst. Thus, x→1,G and x→NP,G are the best 
and worst solutions, respectively. Assuming that o is the dimension to 
perform CDL: 

Collective mutation: 

vi,o,G = xi,o,G + F⋅
(
xci mbesti ,o,G − xi,o,G

)
+ F⋅

(
xr1,o,G − xr2,o,G

)
(10)  

where xr1,o,G is randomly selected from PG and xr2,o,G is randomly 
selected from the union population of PG and recently replaced NP 
solutions.xci mbesti ,o,Gis the weighted average of the top-m fittest solutions 
for the o-th dimension, as calculated in Eq. (11) 

xci mbesti ,o,G =
∑m

k=1
wk × xk,o,G (11)  

where m is a random integer from{1,2,⋯, i} andwk is a normalized 
value as wk =

(m− k+1)
(1+2+⋯+m)

, fork = 1,2, ...,m. The smaller the k value, the 
fitter the solution, and consequently the larger wk. Therefore, the 
dimension of superior solutions has more contribution to xci mbesti ,o,G. 
The collective mutation is similar to the classic “current-to-best” muta-
tion with the o-th dimension of the best vector replaced by xci mbesti ,o,G. 

Collective crossover: 
For the collective crossover, we employ UN_UP (i) as the unsuccessful 

update counter for each individual i. At the beginning, UN_UP(i) is 0. 
Then, in the selection of DE, if offspring u→i,G is better than parent x→i,G, 
UN_UP (i) is set to 0, otherwise, UN_UP (i) increases by 1. From the 
collective crossover operation shown in Eqs. (12) and (13), it is seen that 
if UN_UP (i) is smaller than the threshold value T (T = 90 [12]), then 
classic crossover (i.e. Eq. (12)) is used. Otherwise, collective crossover (i. 
e. Eq. (13)) is performed. The difference between collective and classic 
crossover is that in collective crossover, collective vector xci mbesti ,o,G is 
used to help stagnated solutions escape from stagnation. 

Algorithm 2 
ODF.  

1: Sort the population according to fitness and store the ranking values in Rfi, G {i 
= 1, 2, …, NP}; 

2: Sort dimensions according to diversity and store the ranking values in Rdj, G {j 
= 1, 2, …, D}; 

3: For i = 1: NP 
4: NoD = min (floor (Rfi, G × Dα/NP), D); 
5: For j = 1: D 
6: If Rdi,j,G < NoD 
7: Perform exploitative collective dimensional learning (CDL), i.e. Eqs. 

(10), (12) and (13) as will be introduced in Section 3.4 on dimension j; 
8: Else 
9: Perform explorative single dimensional learning (SDL) i.e. Eqs. (14) 

and (15) as will be introduced in Section 3.4 on dimension j; 
10: End If 
11: End For 
12: End For  

Fig. 4. Illustration of the ODF method.  
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If UN_UP(i) ≤ T 

ui,o,G =

{
vi,o,G if rando(0, 1) ≤ CR or o = orand

xi,o,G otherwise
(12) 

Else 

ui,o,G =

{
vi,o,G if rando(0, 1) ≤ CR or o = orand

xci mbesti ,o,G otherwise
(13) 

End If 
Single dimensional learning (SDL): SDL consists of single mutation and 

single crossover. Assuming that q is the dimension to perform SDL: 
Single mutation: 

vi,q,G = xi,q,G + F⋅
(
xpbest,q,G − xi,q,G

)
+ F⋅

(
xr1,q,G − xr2,q,G

)
(14)  

where xr1,q,Gis randomly selected from PG and xr2,q,G is randomly 
selected from the union population of PG and recently replaced NP so-
lutions. xpbest,q,Gis the q-th dimension of one of the top-p fittest solutions. 

Single crossover: 

ui,q,G =

{
vi,q,G if randq(0, 1) ≤ CR or q = qrand

xi,q,G otherwise
(15) 

Although the principles of these mutation and crossover operations 
inherit from CIPDE [12] and JADE [8], a significant difference is that in 
this proposal, these operations operate at the same individual but 
different dimensions. Fig. 5 illustrates how CDL and SDL operations at 
an individual. For CDL, dimensions, such as “D− 2′′ and “3′′ learn from 
collective dimensions of top-fittest solutions. While for SDL, dimensions, 
such as “D− 3′′ and “1′′ learn from single dimension of top-fittest indi-
vidual. In this way, CDL and SDL cooperate at an individual to generate a 
new offspring. Since CDL collectively utilizes the multiple dimensions of 
promising solutions, it accelerates the information flow among in-
dividuals and exhibits a more exploitative characteristic when compared 

with SDL. Moreover, since CDL and SDL are implemented at the 
dimension level, it facilitates the adaptation and cooperation of 
exploitative and explorative search strategies for dimensions. Exploita-
tion and exploration capabilities of CDL and SDL as well as the benefit of 
the cooperative mechanism will be verified by experiments in Section 
4.1. 

3.5. Time complexity of the proposed mechanisms 

The time complexity of diversity calculation and diversity ranking in 
the SEiLEr mechanism is O(NP × D) and O(D × log2D), respectively at 
each generation. The time complexity of fitness ranking in the NDAC 
mechanism is O(NP × log2NP) at each generation. Thus, the overhead of 
the proposed mechanisms at each generation is O(NP × D + D ×
log2D+NP × log2NP). 

4. Experimental results 

In this section, experiments are performed to verify the effectiveness 
of the proposed ODF method. The CEC2017 [35] test suite, which 
consists of 30 functions, is considered. Note that function F2 has been 
removed [35] because of its instability, so there are 29 functions tested. 
Performance of algorithm is measured using error value, defined as f(x) - 
f(x*), where x is the best solution obtained with the maximum function 
evaluations of 10,000 × D while x* is the optimal solution of the func-
tion. For each function, 51 trials [35] are performed and the Wilcoxon’s 
signed rank test [61] with a significance level of 5% is used to compare 
the performance of two algorithms. When the considered algorithm is 
significantly better than (i.e. win, W), similar to (i.e. tie, T) or worse than 
(i.e. lose, L) the compared algorithm, we mark it using “+”, “=” and “-”, 
respectively. For the setting of control parameters F and CR, parameter 
control method in SHADE [16] is adopted. Besides, the population size 
NP is set as 100. Pseudo-code of ODF-based DE, i.e. ODFDE is shown in 
Algorithm 3. 

Fig. 5. An example that CDL and SDL cooperate at an individual.  

S.X. Zhang et al.                                                                                                                                                                                                                                



Swarm and Evolutionary Computation 80 (2023) 101322

9

4.1. Comparison with single SDL and CDL utilization 

In the ODF method, SDL and CDL are cooperatively used for offspring 
generation. To show the benefit, it is compared with single methods, in 
which SDL and CDL are, respectively adopted for all the dimensions at 
all time. Table 5 shows the comparison results on 30-D and 50-D func-
tions. From Table 5, ODF performs significantly better than both single 
methods. In the total of 116 cases, it outperforms in 78 and 

underperforms in 6 cases. More specifically, it performs better than SDL 
and CDL in 42 (=25+17), 36 (=16+20) cases and loses in 2 (=1 + 1), 4 
(=2 + 2) cases, respectively. Compared with the baselines, ODFDE 
mainly loses on the unimodal function F3, which indicates that the 
proposed dimension-level strategy allocation is not suitable for solving 
this problem. 

CDL exhibits a general more exploitative characteristic than SDL on 
all the twenty-nine functions. As an example, Fig. 6 plots the achieved 
final diversity of dimensions by SDL and CDL on 30-D simple multi- 
modal function F5 and hybrid function F15. It is observed that on 
most of the 30 dimensions, CDL achieves smaller diversity than SDL. 
Fig. 7 shows the advantages of CDL and SDL on the twenty-nine 30-D 
CEC2017 functions. As seen, CDL is better than SDL on 8 functions (i. 
e. F4, F5, F7, F8, F10, F20, F21, F29) while SDL is better than CDL on 
other 8 functions (i.e. F11, F13-F15, F18, F19, F25, F30). Nevertheless, 
according to Table 5, the advantage of ODF on these 16 functions is clear 
with the observation that ODFDE performs better than SDL and CDL in 
16 and 9 cases and worse in 0 and 1 case, respectively. 

Fig. 8 shows the convergence plots of SDL, CDL and ODF over gen-
erations on 30-D simple multi-modal function F5 and hybrid function 
F15. It is seen that CDL has advantages over SDL on function F5 while 
SDL is more suitable for solving function F15. However, ODF achieves 
better results on both functions, meaning that ODF could coordinate 
both methods for a better performance. 

For the total 58 cases, Table 6 shows the comparison results ac-
cording to Holm, Hochberg and Hommel procedures [62]. As shown, 
ODF is statistically better when compared with both SDL and CDL. 

The effectiveness of ODF is also investigated with fixed F and CR 
settings of F = 0.5 and CR = 0.5. As shown in Table S1 in the supple-
mentary file, ODF still outperforms SDL and CDL with the “win/lose” 
metrics of “19/6′′ and “15/1′′ in the 30-D case and “20/6′′ and “19/1′′ in 
the 50-D case. 

4.2. Comparison with single OSK and DSK utilization 

ODF method is characterized by the simultaneous utilization of DSK 
and OSK. Herein, we verify the effectiveness by comparing with the 
following two variants: 

OSK_only: In this variant, only OSK but no DSK is utilized. Specif-
ically, using OSK, the inferior solutions are assigned CDL while the su-
perior solutions are assigned SDL. Without DSK, CDL and SDL are not 
assigned at the dimension level. 

DSK_only: In this variant, only DSK but no OSK is utilized. Specif-
ically, utilizing DSK, SEiLEr (Algorithm 1) is preserved but without OSK, 
the number of dimension NoD for each solution is set as a uniformly 
distributed random integer within [1, D]. According to our preliminary 
experiment, this random setting performs better than the other eleven 
fixed NoD settings, including 0.1 × D to 0.9 × D with a step of 0.1 × D, 
0.95 × D and 0.99 × D, as shown in Table 7. 

Table 8 presents the comparison and summarizes the “win/tie/lose” 
results. It can be observed that ODF shows advantages over OSK_only 
and DSK_only with the win count much larger than the lose count i.e. 25 
(=16+9) against 3 (2 + 1). This result indicates that appropriately 
merging the knowledge from both objective and dimension spaces could 
improve the performance. 

4.3. Effectiveness of SEiLEr 

In the utilization of DSK, SEiLEr mechanism encourages small di-
versity dimensions to exploit while large diversity dimensions to 
explore. Section 3.2 has illustrated the reasons. To further confirm the 

Algorithm 3 
ODFDE.  

1: Initialize a population P0 = { x→i,0, i ∈ {1,2,⋯NP}}; 
2: Set memory MF = 0.5, MCR = 0.5, history length H = D, initialize history index 

k = 1, initialize external archiveA = ∅, set generation count G = 0; 
3: While the stopping criteria are not satisfied, Do 
4: Sort the population according to fitness and store the ranking values in Rfi, G 

{i = 1, 2, …, NP}; 
5: Sort dimensions according to diversity and store the ranking values in Rdj, G 

{j = 1, 2, …, D}; 
6: Set SF = ∅, SCR = ∅; 
7: For i = 1: NP 
8: NoD = min (floor (Rfi, G × Dα/NP), D); 
9: Generate the scaling factor and crossover factor for SDL and CDL, 

respectively, i.e.ri = randint[1,H], Fi,G = randci(MF,ri ,0.1), CRi,G =

randni(MCR,ri ,0.1), where randc(a,b) and randn(a,b) are Cauchy distribution 
and normal distribution with location parameter a and scale parameter b, 
respectively. 

10: For j = 1: D 
11: If Rdi,j,G < NoD 
12: Perform exploitative collective dimensional learning (CDL), i.e. Eqs. 

(10), (12) and (13) to generate trial vectorui,j,G; 
13: Else 
14: Perform explorative single dimensional learning (SDL) i.e. Eqs. (14) and 

(15) to generate trial vector ui,j,G; 
15: End If 
16: End For 
17: If f( u→i,G) ≤ f( x→i,G)

18: x→i,G+1 = u→i,G, A← x→i,G, SF←Fi,G , SCR←CRi,G ; 
19: Else 
20: x→i,G+1 = x→i,G; 
21: End If 
22: End For 
23: If |A| > NP 
24: Randomly remove |A| − NPindividuals from A; 
25: End If 
26: Update MF and MCR based on SF and SCR, respectively according to 

Procedure 1; 
27: G = G + 1; 
28: End While  

Procedure 1 
Update MF and MCR  

1: 
MF,k,G+1= {

meanWL (SF) if SF ∕= ∅

MF,k,G otherwise

MCR,k,G+1= {
meanWA (SCR) if SCR ∕= ∅

MCR,k,G otherwise  

where meanWA (SCR) =
∑|SCR |

m=1wm⋅SCR,m, meanWL (SF) =

∑|SF |
m=1wm⋅S2

F,m
∑|SF |

m=1wm⋅SF,m
, wm =

Δfm
∑|SCR |

m=1Δfm
, where Δfm =

⃒
⃒
⃒
⃒f( u→m,G) − f( x→m,G)

⃒
⃒
⃒
⃒

2: If SF ∕= ∅and SCR ∕= ∅ 
3: k = k +1; 
4: If k > H 
5: k = 1; 
6: End If 
7: End If  

S.X. Zhang et al.                                                                                                                                                                                                                                



Swarm
andEvolutionaryComputation80(2023)101322

10

Table 5 
Performance comparisons of ODFDE with SDL and CDL on 30-D and 50-D CEC2017 benchmark set over 51 independent runs.   

30-D 50-D  

SDL CDL ODFDE SDL CDL ODFDE  

mean std sig mean std sig mean std mean std sig mean std sig mean std 

F1 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 
F3 0.00E+00 0.00E+00 - 0.00E+00 0.00E+00 - 6.15E+03 1.37E+04 0.00E+00 0.00E+00 - 0.00E+00 0.00E+00 - 2.34E+04 4.54E+04 
F4 5.91E+01 1.67E+00 + 4.80E+01 2.35E+01 - 5.90E+01 1.51E+00 5.45E+01 4.46E+01 = 5.09E+01 4.86E+01 = 5.79E+01 5.06E+01 
F5 1.53E+01 3.14E+00 + 1.24E+01 4.98E+00 = 1.10E+01 4.85E+00 3.21E+01 5.68E+00 + 4.02E+01 1.17E+01 + 2.67E+01 5.95E+00 
F6 3.87E-05 5.78E-05 + 5.63E-05 8.58E-05 + 1.75E-07 3.78E-07 8.10E-04 1.28E-03 + 3.47E-03 7.73E-03 + 1.37E-05 1.76E-05 
F7 4.51E+01 2.38E+00 + 4.20E+01 4.53E+00 = 4.12E+01 4.94E+00 8.09E+01 3.51E+00 + 8.47E+01 1.04E+01 + 7.51E+01 7.98E+00 
F8 1.57E+01 2.93E+00 + 1.29E+01 2.93E+00 = 1.24E+01 4.84E+00 3.39E+01 5.11E+00 + 3.99E+01 9.81E+00 + 2.70E+01 7.50E+00 
F9 4.95E-02 1.11E-01 + 1.05E-01 1.73E-01 + 0.00E+00 0.00E+00 9.73E-01 9.34E-01 + 1.13E+00 1.24E+00 + 2.13E-02 9.01E-02 
F10 1.67E+03 2.38E+02 + 1.47E+03 3.59E+02 = 1.49E+03 4.19E+02 3.40E+03 2.72E+02 = 3.05E+03 5.67E+02 - 3.38E+03 4.80E+02 
F11 3.20E+01 2.62E+01 + 4.64E+01 3.27E+01 + 2.36E+01 2.78E+01 1.27E+02 3.11E+01 + 1.50E+02 2.80E+01 + 3.73E+01 8.59E+00 
F12 1.20E+03 4.31E+02 + 1.51E+03 1.55E+03 + 5.00E+02 2.70E+02 5.96E+03 3.57E+03 = 8.20E+03 1.23E+04 = 6.83E+03 7.60E+03 
F13 3.60E+01 1.63E+01 + 5.72E+01 3.33E+01 + 2.22E+01 1.56E+01 3.74E+02 4.27E+02 + 5.45E+02 4.56E+02 + 6.40E+01 5.19E+01 
F14 3.04E+01 5.88E+00 + 4.95E+01 1.80E+01 + 2.37E+01 3.60E+00 2.15E+02 6.32E+01 + 2.64E+02 7.41E+01 + 3.89E+01 1.45E+01 
F15 2.22E+01 1.29E+01 + 6.82E+01 5.23E+01 + 3.57E+00 1.95E+00 3.06E+02 1.39E+02 + 3.96E+02 1.19E+02 + 5.87E+01 4.01E+01 
F16 2.55E+02 1.50E+02 + 3.10E+02 1.38E+02 + 1.82E+02 1.61E+02 7.44E+02 1.88E+02 + 7.06E+02 2.13E+02 + 6.07E+02 2.10E+02 
F17 5.09E+01 2.68E+01 + 4.80E+01 3.07E+01 + 3.45E+01 2.81E+01 5.27E+02 1.28E+02 = 5.89E+02 1.86E+02 = 5.83E+02 2.29E+02 
F18 6.06E+01 4.71E+01 + 1.35E+02 7.60E+01 + 2.44E+01 1.15E+01 1.93E+02 1.15E+02 + 1.96E+02 1.04E+02 + 7.42E+01 3.96E+01 
F19 1.55E+01 1.72E+01 + 5.36E+01 3.44E+01 + 5.98E+00 2.79E+00 1.47E+02 4.60E+01 + 1.55E+02 5.01E+01 + 2.73E+01 1.22E+01 
F20 7.30E+01 4.97E+01 + 7.72E+01 6.07E+01 = 7.76E+01 6.15E+01 3.29E+02 1.15E+02 = 3.45E+02 1.83E+02 = 3.73E+02 1.88E+02 
F21 2.17E+02 3.80E+00 + 2.13E+02 4.82E+00 = 2.13E+02 4.56E+00 2.35E+02 4.59E+00 + 2.40E+02 9.77E+00 + 2.30E+02 7.59E+00 
F22 1.00E+02 1.49E-13 + 1.00E+02 1.14E-13 = 1.00E+02 1.21E-13 3.19E+03 1.56E+03 = 3.52E+03 1.46E+03 = 3.35E+03 1.26E+03 
F23 3.64E+02 4.83E+00 + 3.64E+02 8.29E+00 = 3.61E+02 7.07E+00 4.59E+02 9.53E+00 = 4.75E+02 1.63E+01 + 4.59E+02 1.57E+01 
F24 4.35E+02 3.18E+00 = 4.37E+02 6.61E+00 = 4.36E+02 5.78E+00 5.30E+02 5.58E+00 = 5.49E+02 1.17E+01 + 5.30E+02 8.13E+00 
F25 3.87E+02 8.04E-02 + 3.87E+02 2.57E-01 + 3.87E+02 1.92E-02 5.14E+02 3.79E+01 = 5.21E+02 4.22E+01 = 5.10E+02 3.58E+01 
F26 1.08E+03 6.11E+01 = 1.08E+03 1.81E+02 = 1.07E+03 6.58E+01 1.40E+03 8.54E+01 = 1.58E+03 1.45E+02 + 1.40E+03 1.08E+02 
F27 5.06E+02 6.75E+00 + 5.09E+02 8.10E+00 + 5.03E+02 5.63E+00 5.45E+02 2.64E+01 + 5.61E+02 3.05E+01 + 5.21E+02 9.76E+00 
F28 3.43E+02 5.82E+01 + 3.48E+02 6.18E+01 + 3.24E+02 4.68E+01 4.89E+02 2.50E+01 + 4.92E+02 2.24E+01 + 4.67E+02 1.84E+01 
F29 4.65E+02 3.52E+01 + 4.49E+02 3.08E+01 + 4.35E+02 1.55E+01 4.61E+02 9.22E+01 + 5.25E+02 1.18E+02 + 3.86E+02 6.73E+01 
F30 2.09E+03 1.27E+02 + 2.21E+03 2.02E+02 + 2.02E+03 9.06E+01 7.23E+05 1.28E+05 + 6.63E+05 6.18E+04 + 6.11E+05 3.57E+04 
W 
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effectiveness from the perspective of experiment, it is compared with the 
following two variants. 

reverse: In this variant, small diversity dimensions perform explora-
tion while large diversity dimensions perform exploitation, termed as 

SErLEi. 
random: In this variant, dimensions to exploit or to explore is 

random, regardless of their diversity. 
Except the above differences, other settings are kept the same as 

ODFDE. Table 9 shows the comparison results on 30-D functions. From 
Table 9, ODFDE is significantly better than the reverse variant, winning 
in 21 functions and losing in 1 function. On the ten hybrid functions F11- 
F20, ODFDE performs better than the reverse variant on 9 functions 
(F11, F12 and F14-F20) and similarly on 1 function (F13). Compared 
with the random variant, ODFDE is better on 5 functions. Again, from 
Table 9, four (F12, F15, F18 and F19) out of these five functions are 
hybrid functions. Performance superiority to reverse is much more sig-
nificant because this variant always assigns exploitative and explorative 
tasks against ODFDE. 

To have a deeper insight into the working process, the average 
number of exploitative operations in dimension within each group over 
the entire evolution process is compared and the rankings among groups 

Fig. 6. Achieved final diversity of dimensions by SDL and CDL on 30-D simple multi-modal function F5 and hybrid function F15.  

Fig. 7. Performance comparison of SDL and CDL on the twenty-nine 30-D 
CEC2017 functions. 

Fig. 8. Convergence plots of SDL, CDL and ODF on 30-D simple multi-modal function F5 and hybrid function F15 in the trial with the median error value.  

Table 6 
Comparison results of ODFDE with single strategy according to Holm, Hochberg 
and Hommel procedures.  

vs. unadjusted p pHolm pHochberg pHommel 

SDL 0.000351 0.000351 0.000351 0.000351 
CDL <1E-6 <1E-6 <1E-6 <1E-6  
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in descending order are shown in Table 10. The unimodal basic func-
tions are highlighted with gray background. From Table 10, these 
unimodal basic functions have the highest rankings among the groups. 
Among the associated hybrid functions, ODF performs better than 
reverse and random on {F11, F12, F14, F15, F18, F19} and {F12, F15, 
F18, F19}, respectively. The above observations demonstrate the ad-
vantages of SEiLEr for solving hybrid functions by correctly detecting 
the relative function difficulties and confirm the illustration given pre-
viously in Section 3.2. 

Fig. 9 plots the best fitness achieved by the reverse variant and 
SEiLEr over generations on functions F5 and F15. It was known from 
Fig. 6 that F5 requires relatively more exploitation while F15 needs 
relatively more exploration. Fig. 9 implies that on both functions, SEiLEr 
obtains better results, indicating that SEiLEr maintains a better exploi-
tation and exploration balance than the reverse variant and exhibits a 
more reliable performance for different types of optimization tasks. 

To show the differences in decision space, Fig. 10 presents the di-
versity comparison. From this figure, SEiLEr has a faster diversity 

decrease than the reverse variant on F5 while a relatively slower di-
versity decrease on F15. This correctly matches the exploitation/ 
exploration needs of F5 and F15. 

4.4. Comparison with OSK-based multi-strategy DEs 

In literature, many OSK-based multi-strategy methods have been 
proposed. The following six methods are considered for performance 
comparisons with ODF: 

ETI-SHADE: Event-triggered impulsive control-based SHADE [46]; 
SaM-SHADE: Strategy adaptive [38] SHADE; 
SaDE: Strategy adaptive DE [9]; 
IDE: Individual-dependent DE [20]; 
ACoS-SHADE: Adaptive coordinate system [48] improved SHADE; 
MLCCDE: Multi-layer competitive-cooperative DE [51]. 
To tune the comparison algorithms, which did not use the CEC2017 

functions in the original paper for the best performance, the key pa-
rameters that mainly affect the performance of the algorithms are 

Table 7 
Performance comparison results of DSK_only with other NoD values.  

vs. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99 

win 19 18 20 19 17 20 15 15 6 10 7 
tie 10 11 8 9 11 9 14 14 21 19 21 
lose 0 0 1 1 1 0 0 0 2 0 1  

Table 8 
Performance comparisons of ODFDE with single OSK and DSK on 30-D CEC2017 benchmark set over 51 independent runs.   

OSK_only DSK_only ODFDE  

mean std sig mean std sig mean std 

F1 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 
F3 0.00E+00 0.00E+00 - 1.40E+04 1.56E+04 + 6.15E+03 1.37E+04 
F4 4.33E+01 2.68E+01 - 5.76E+01 8.30E+00 - 5.90E+01 1.51E+00 
F5 9.99E+00 2.83E+00 = 1.16E+01 3.54E+00 = 1.10E+01 4.85E+00 
F6 4.55E-05 6.70E-05 + 4.50E-07 1.07E-06 = 1.75E-07 3.78E-07 
F7 3.93E+01 2.41E+00 = 4.23E+01 3.34E+00 + 4.12E+01 4.94E+00 
F8 1.20E+01 2.86E+00 = 1.24E+01 3.78E+00 = 1.24E+01 4.84E+00 
F9 1.03E-01 2.23E-01 + 1.42E-02 6.64E-02 + 0.00E+00 0.00E+00 
F10 1.51E+03 3.77E+02 = 1.43E+03 3.15E+02 = 1.49E+03 4.19E+02 
F11 4.07E+01 2.56E+01 + 3.79E+01 2.93E+01 + 2.36E+01 2.78E+01 
F12 1.27E+03 5.38E+02 + 4.85E+03 3.90E+03 + 5.00E+02 2.70E+02 
F13 5.87E+01 3.61E+01 + 4.13E+01 2.99E+01 + 2.22E+01 1.56E+01 
F14 5.26E+01 1.95E+01 + 1.92E+01 9.03E+00 = 2.37E+01 3.60E+00 
F15 6.34E+01 6.47E+01 + 4.11E+00 3.14E+00 = 3.57E+00 1.95E+00 
F16 3.07E+02 1.35E+02 + 2.21E+02 1.29E+02 = 1.82E+02 1.61E+02 
F17 5.64E+01 4.71E+01 + 4.23E+01 2.94E+01 + 3.45E+01 2.81E+01 
F18 1.28E+02 7.46E+01 + 9.22E+03 4.07E+04 = 2.44E+01 1.15E+01 
F19 5.38E+01 3.34E+01 + 7.16E+00 3.08E+00 = 5.98E+00 2.79E+00 
F20 8.27E+01 6.05E+01 = 5.48E+01 5.20E+01 = 7.76E+01 6.15E+01 
F21 2.12E+02 3.04E+00 = 2.14E+02 3.84E+00 = 2.13E+02 4.56E+00 
F22 1.00E+02 1.14E-13 = 1.00E+02 1.66E-13 = 1.00E+02 1.21E-13 
F23 3.64E+02 4.67E+00 + 3.64E+02 6.62E+00 = 3.61E+02 7.07E+00 
F24 4.36E+02 5.55E+00 = 4.37E+02 4.95E+00 = 4.36E+02 5.78E+00 
F25 3.87E+02 2.30E-01 + 3.87E+02 2.95E-02 + 3.87E+02 1.92E-02 
F26 1.06E+03 6.48E+01 = 1.06E+03 6.61E+01 = 1.07E+03 6.58E+01 
F27 5.08E+02 6.85E+00 + 5.05E+02 4.95E+00 = 5.03E+02 5.63E+00 
F28 3.48E+02 5.90E+01 + 3.34E+02 5.47E+01 = 3.24E+02 4.68E+01 
F29 4.36E+02 2.04E+01 = 4.40E+02 3.17E+01 = 4.35E+02 1.55E+01 
F30 2.18E+03 1.92E+02 + 2.09E+03 8.67E+01 + 2.02E+03 9.06E+01 
W 

T 
L 

16 
11 
2 

9 
19 
1   
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identified from the original literature. Several values of the parameters 
are tested, and the best-performing parameters are obtained by the 
Friedman test with the best ranking. The considered parameters, range 
and the tuned values are summarized in Table S2 in the supplementary 
file. 

Table S3 in the supplementary file shows the comparisons on 10-, 30- 
, 50- and 100-D functions while Table 11 summarizes the results. From 
these tables, ODFDE performs significantly better in 30-, 50- and 100-D 
cases, winning on no less than 15 functions and losing on no more than 6 

functions. For instance, in the 30-D case, the “win/lose” count compared 
with ETI-SHADE, SaM-SHADE, SaDE, IDE, ACoS-SHADE and MLCCDE is 
“20/3′′, “24/1′′, “24/3′′, “20/2′′, “21/3′′ and “19/4′′, respectively. On the 
10-D functions, IDE and MLCCDE perform much better while ODFDE is 
superior to SaM-SHADE, SaDE and competitive to ETI-SHADE and ACoS- 
SHADE. 

Table 12 reports the achieved p valves according to Holm, Hochberg 
and Hommel procedures [62]. It can be observed that ODFDE performs 
statistically better than all the six DEs in all the cases except MLCCDE in 

Table 9 
Performance comparisons of ODFDE with the variants of SEiLEr on 30-D CEC2017 benchmark set over 51 independent runs.   

reverse random ODFDE  

mean std sig mean std sig mean std 

F1 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 
F3 2.12E+03 8.61E+03 - 2.16E+03 8.84E+03 = 6.15E+03 1.37E+04 
F4 5.85E+01 8.68E+00 + 5.80E+01 7.93E+00 = 5.90E+01 1.51E+00 
F5 1.46E+01 2.96E+00 + 1.17E+01 5.20E+00 = 1.10E+01 4.85E+00 
F6 9.66E-06 1.18E-05 + 7.26E-07 2.30E-06 = 1.75E-07 3.78E-07 
F7 4.55E+01 3.32E+00 + 4.29E+01 4.87E+00 + 4.12E+01 4.94E+00 
F8 1.67E+01 2.50E+00 + 1.33E+01 5.58E+00 = 1.24E+01 4.84E+00 
F9 2.82E-02 7.35E-02 + 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 
F10 1.62E+03 2.57E+02 = 1.54E+03 3.78E+02 = 1.49E+03 4.19E+02 
F11 2.83E+01 2.80E+01 + 2.18E+01 2.63E+01 = 2.36E+01 2.78E+01 
F12 1.19E+03 3.75E+02 + 8.72E+02 2.98E+02 + 5.00E+02 2.70E+02 
F13 2.39E+01 1.40E+01 = 2.35E+01 1.57E+01 = 2.22E+01 1.56E+01 
F14 2.60E+01 3.48E+00 + 2.42E+01 2.24E+00 = 2.37E+01 3.60E+00 
F15 1.23E+01 1.78E+01 + 5.18E+00 2.55E+00 + 3.57E+00 1.95E+00 
F16 2.62E+02 1.27E+02 + 2.35E+02 1.67E+02 = 1.82E+02 1.61E+02 
F17 4.95E+01 1.89E+01 + 3.47E+01 2.42E+01 = 3.45E+01 2.81E+01 
F18 3.92E+01 2.77E+01 + 2.43E+01 3.08E+00 + 2.44E+01 1.15E+01 
F19 7.81E+00 1.80E+00 + 8.49E+00 3.17E+00 + 5.98E+00 2.79E+00 
F20 8.10E+01 5.67E+01 + 7.11E+01 6.08E+01 = 7.76E+01 6.15E+01 
F21 2.19E+02 3.41E+00 + 2.13E+02 4.68E+00 = 2.13E+02 4.56E+00 
F22 1.00E+02 1.14E-13 = 1.00E+02 1.11E-13 = 1.00E+02 1.21E-13 
F23 3.64E+02 4.96E+00 + 3.60E+02 7.04E+00 = 3.61E+02 7.07E+00 
F24 4.36E+02 3.87E+00 = 4.35E+02 5.24E+00 = 4.36E+02 5.78E+00 
F25 3.87E+02 5.37E-02 + 3.87E+02 1.72E-02 = 3.87E+02 1.92E-02 
F26 1.05E+03 1.23E+02 = 1.05E+03 7.34E+01 = 1.07E+03 6.58E+01 
F27 5.05E+02 7.15E+00 = 5.04E+02 6.48E+00 = 5.03E+02 5.63E+00 
F28 3.37E+02 5.67E+01 + 3.19E+02 4.12E+01 = 3.24E+02 4.68E+01 
F29 4.61E+02 2.45E+01 + 4.38E+02 2.70E+01 = 4.35E+02 1.55E+01 
F30 2.08E+03 1.10E+02 + 2.02E+03 9.12E+01 = 2.02E+03 9.06E+01 
W 

T 
L 

21 
7 
1 

5 
24 
0   

Table 10 
Ranking (in descending order) of the average number of Ei operations in dimension within each group (1 denotes the highest ranking).  
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Fig. 9. Best fitness achieved by the reverse variant and SEiLEr over function evaluations (FES) on 30-D simple multi-modal function F5 and hybrid function F15 in 
the trial with the median error value. 

Fig. 10. Diversity achieved by the reverse variant and SEiLEr over function evaluations (FES) on 30-D simple multi-modal function F5 and hybrid function F15 in the 
trial with the median error value. 

Table 11 
Comparison results of ODFDE with OSK-based multi-strategy DEs.  

vs. win tie lose win tie lose 
10-D 30-D 

ETI-SHADE 8 13 8 20 6 3 
SaM-SHADE 8 19 2 24 4 1 
SaDE 9 13 7 24 2 3 
IDE 5 12 12 20 7 2 
ACoS-SHADE 7 14 8 21 5 3 
MLCCDE 5 12 12 19 6 4  

50-D 100-D 
ETI-SHADE 20 5 4 15 10 4 
SaM-SHADE 20 8 1 18 6 5 
SaDE 24 3 2 26 3 0 
IDE 20 6 3 23 2 4 
ACoS-SHADE 21 5 3 19 4 6 
MLCCDE 20 5 4 22 4 3  

Table 12 
Overall performance comparisons of ODFDE with all the compared algorithms 
according to Holm, Hochberg and Hommel procedures.  

vs. unadjusted p pHolm pHochberg pHommel 

ETI-SHADE 6E-6 1.2E-5 1.2E-5 1.2E-5 
SaM-SHADE <1E-6 0.000001 0.000001 0.000001 
SaDE <1E-6 <1E-6 <1E-6 <1E-6 
IDE 0.000007 0.000028 0.000028 0.000028 
ACoS-SHADE 0.000123 0.000123 0.000123 0.000123 
MLCCDE 0.043476 0.086952 0.048882 0.048882 
AEPD-SHADE <1E-6 <1E-6 <1E-6 <1E-6 
SHADE/eig 0.001 0.001 0.001 0.001 
CSM-SHADE <1E-6 <1E-6 <1E-6 <1E-6 
SCSS-SHADE 0.048882 0.086952 0.048882 0.048882  
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terms of Holm test. 

4.5. Comparison with DSK-based multi-strategy DEs 

ODFDE is further compared with two DSK-based multi-strategy DE 
algorithms. They are: 

AEPD-SHADE: Auto-enhanced population diversity [34] -based 
SHADE; 

SHADE/eig: Eigenvector-based crossover operator [33] enhanced 
SHADE. 

Similarly, the key parameters of these algorithms are tuned, as 
shown in Table S2. From Tables S4 and 13, it is seen that ODFDE exhibits 
better performance than AEPD-SHADE and SHADE/eig on all the 
considered dimensionalities, outperforming on 66 (15+20+15+16) and 
71 (9+19+21+22) and underperforming on 15 (4+1+3+7) and 15 
(8+2+2+3) functions, respectively. This is also confirmed by Holm, 
Hochberg and Hommel procedures shown in Table 12, in which ODFDE 
is statistically better with the p value < 0.05. 

4.6. Comparison with OSK and SSK-based multi-strategy DEs 

ODFDE is also compared with OSK and SSK-based multi-strategy 
methods. We consider the following two algorithms: 

CSM-SHADE: Cheap surrogate model-based SHADE [55]; 
SCSS-SHADE: Selective candidate with similarity selection rule- 

based SHADE [60]. 
As seen from Tables S5 and 14, ODFDE achieves better results than 

CSM-SHADE and SCSS-SHADE on 90 and 56 functions and loses on 8 and 
16 functions, respectively. With respect to the function dimensionality, 
it is seen that ODFDE is superior to CSM-SHADE in all the cases. 
Compared with SCSS-SHADE, ODFDE exhibits better performance in 30- 
, 50- and 100-D cases while on the 10-D functions, SCSS-SHADE per-
forms slightly better with the “win/lose” metric of “9/6′′. Table 12 
shows that ODFDE performs statistically better than CSM-SHADE ac-
cording to Holm, Hochberg and Hommel procedures and SCSS-SHADE 
according to Hochberg and Hommel procedures. 

Fig. 11 shows the convergence graphics of the eleven DEs from 
Subsections 4–6 on twelve selected 10-, 30-, 50- and 100-D CEC2017 
functions. As seen, ODFDE converges to the best fitness on 10 functions 

and achieves similar performance on 1 function. 

4.7. Comparison with state-of-the-art multi-strategy utilization schemes 

Sections 4.4, 4.5 and 4.6 have compared ODFDE with OSK, DSK and 
OSK+SSK based multi-strategy DE algorithms. It is also interesting to 
test the competitiveness of ODF against other multi-strategy utilization 
schemes. To this end, the following three methods are considered for 
comparisons. 

Sa: Strategy adaptation method proposed in [9]; 
CSM: Cheap surrogate model presented in [55]; 
SCSS: Selective candidate with similarity selection rule proposed in 

[60]. 
Each of the three methods is, respectively implemented with SDL and 

CDL and compared with ODFDE. As seen from Tables S6 and 15, ODF 
outperforms Sa, CSM and SCSS on 54, 74, 50 and loses on 13, 11, 17 
functions, respectively. Similar to 

SCSS-SHADE, SCSS exhibits better performance in the 10-D case. 
From the multi-problem comparison results shown in Table 16, ODF 
consistently achieves superior performance in all the three cases. In the 
case of Sa and CSM, the difference is statistically significant. 

4.8. Application in real-world problems 

To further evaluate the performance of ODF method, it is also 
compared on ten CEC2011 [63] real-world problems, as shown in 
Table S7. Thirty trials were performed for each problem with each trial 
assigned 10,000 × D function evaluations. From the results summarized 
in Table 17, it can be observed that ODF also performs better on the 
real-world problems, winning in 6, 6 and 4 and losing in none, none and 
one function when compared with Sa, CSM and SCSS, respectively. 

As pointed out in [35], in real-world optimization problems, 
different subcomponents of variables may have different properties. The 
proposed SEiLEr mechanism optimizes subcomponents separately with 
different strategies. To demonstrate its contribution in the real-world 
optimization, the two variants reverse and random constructed previ-
ously in Section 4.3 are compared with ODF. As seen from Tables S8 and 
18, ODF performs better than reverse and random in 6 and 4 cases and 
loses in none case, confirming the effectiveness of the assignment of 
exploitative and explorative tasks to subcomponents. 

4.9. Time complexity of the multi-strategy utilization schemes 

To study the time complexity, we follow the method suggested in 
[35], as described in the followings. T0 is the time for computing the test 
program below: 

for i = 1:1,000,000 
x = 0.55 + (double) i; 
x = x + x; x = x/2; x = x*x; x=sqrt(x); x=log(x); x=exp(x); x = x/(x 

+ 2); end 
T1 represents the time consumed by 200,000 evaluations on 30-D 

F18; T2 is average computing time over 5 trials for an algorithm to 
optimize the 30-D F18 with 200,000 evaluations. Consequently, 
(T2− T1)/T0 gives the complexity of the algorithm. 

All the considered Sa, CSM, SCSS and ODF methods were imple-
mented using MATLAB language for fair comparisons. Table 19 shows 
the experimental results. It shows that the time complexity of ODF is 
lower than SCSS and CSM but higher than Sa. The reason is that 
compared with SCSS and CSM, ODF does not require multiple offspring 
generation and distance calculations. While compared with Sa, ODF 

Table 13 
Comparison results of ODFDE with DSK-based multi-strategy DEs.  

vs. win tie lose win tie lose 
10-D 30-D 

AEPD-SHADE 15 10 4 20 8 1 
SHADE/eig 9 12 8 19 8 2  

50-D 100-D 
AEPD-SHADE 15 11 3 16 6 7 
SHADE/eig 21 6 2 22 4 3  

Table 14 
Comparison results of ODFDE with OSK and SSK-based multi-strategy DEs.  

vs. win tie lose win tie lose 
10-D 30-D 

CSM-SHADE 18 10 1 26 1 2 
SCSS-SHADE 6 14 9 21 7 1  

50-D 100-D 
CSM-SHADE 23 4 2 23 3 3 
SCSS-SHADE 16 11 2 13 12 4  
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Fig. 11. Convergence graphics of the best fitness by the compared DEs on twelve selected 10-D, 30-D, 50-D and 100-D CEC2017 functions in the trial with the 
median error value. On 50-D F3 and F9, algorithms terminate when the best fitness reach 1E-08. 
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needs to: (1) measure the dimension diversity and (2) sort the fitness and 
dimension diversity. Thus, the superior performance of ODF does not 
come for free. 

4.10. Flexibility of the ODF method  

(1) Flexibility on state-of-the-art DEs 

To demonstrate the flexibility of the ODF method, it is further 
incorporated with two state-of-the-art DE algorithms, namely SCSS-L- 
SHADE [60] algorithm with linear population size reduction scheme and 
SCSS-jSO [60], leading to two new variants named ODF-SCSS-L-SHADE 
and ODF-SCSS-jSO, respectively. To fit the scheme, α in Eq. (9) is set as 
1+FES/Max_FES. Parameters for the comparison algorithms are from 
the corresponding literature since the CEC2017 test suite was originally 
used. 

Performance comparisons of ODF-SCSS-L-SHADE and ODF-SCSS-jSO 
with the original DEs are shown in Tables S9 and 20. From these tables, 
ODF variants perform significantly better than the original baselines in 
30-, 50- and 100-D cases and are competitive in 10-D case. For instance, 
when comparing ODF-SCSS-jSO with SCSS-jSO, the “win/lose” metric in 
10-, 30-, 50- and 100-D cases is “6/7′′, “11/3′′, “14/4′′ and “16/1′′, 
respectively. According to the comparison results given by Holm, 
Hochberg and Hommel procedures in Table 21, ODF methods perform 
better in all the cases and are statistically significant. 

It is also interesting to investigate the performance of the constructed 
ODF-SCSS-jSO against other state-of-the-art DE variants. To this end, we 
consider the following four algorithms: 

PaDE [22]: It is an improved L-SHADE algorithm with a new 
parameter adaptation scheme; 

L-SHADE-SP [64]: It is an improved jSO algorithm with a selective 
pressure strategy; 

EBL-SHADE [65]: It is an improved L-SHADE algorithm with novel 
mutation strategies; 

EaDE [66]: It is an explicitly adaptative DE based on two competitive 

Table 15 
Comparison results of ODF with state-of-the-art multi-strategy utilization 
schemes.  

vs. win tie lose win tie lose 
10-D 30-D 

Sa 5 19 5 17 10 2 
CSM 8 18 3 23 4 2 
SCSS 2 19 8 12 13 4  

50-D 100-D 
Sa 15 12 2 17 8 4 
CSM 22 5 2 21 4 4 
SCSS 17 10 2 19 7 3  

Table 16 
Overall performance comparisons of ODF with state-of-the-art multi-strategy 
utilization schemes according to Holm, Hochberg and Hommel procedures.  

vs. unadjusted p pHolm pHochberg pHommel 

Sa <1E-6 <1E-6 <1E-6 <1E-6 
CSM 0.000042 0.000085 0.000085 0.000085 
SCSS 0.127099 0.127099 0.127099 0.127099  

Table 17 
Comparison results of ODF with state-of-the-art multi-strategy utilization 
schemes on real-world problems.  

vs. win tie lose 

Sa 6 4 0 
CSM 6 4 0 
SCSS 4 5 1  

Table 18 
Contribution of SEiLEr mechanism in the real-world optimization.  

vs. win tie lose 

reverse 6 4 0 
random 4 6 0  

Table 19 
Time complexity comparisons of the strategy utilization schemes (in second).   

T0 T1 T2 (T2− T1)/T0 

Sa 0.1073 0.7561 1.4706 6.65 
CSM 15.0184 132.91 
SCSS 2.795 19.00 
ODF 1.6758 8.57  

Table 20 
Comparison results of ODF with state-of-the-art DEs.   

vs. win tie lose win tie lose  
10-D 30-D 

ODF-SCSS- L-SHADE 3 24 2 11 15 3 
L-SHADE SCSS-L-SHADE 5 19 5 13 12 4 
ODF-SCSS- jSO 7 15 7 11 15 3 
jSO SCSS-jSO 6 16 7 11 15 3   

50-D 100-D 
ODF-SCSS- 

L-SHADE 
L-SHADE 13 13 3 18 8 3 
SCSS-L-SHADE 9 17 3 12 14 3 

ODF-SCSS- jSO 15 13 1 25 4 0 
jSO SCSS-jSO 14 11 4 16 12 1  

Table 21 
Overall performance comparisons of ODF with state-of-the-art DEs according to 
Holm, Hochberg and Hommel procedures.  

ODF-SCSS-L-SHADE vs. unadjusted p pHolm pHochberg pHommel 

L-SHADE 0.000008 0.000023 0.000023 0.000023 
SCSS-L-SHADE 0.009498 0.018996 0.018996 0.018996 
ODF-SCSS- jSO 

vs. 
unadjusted p pHolm pHochberg pHommel 

jSO <1E-6 <1E-6 <1E-6 <1E-6 
SCSS-jSO 0.01977 0.01977 0.01977 0.01977  

Table 22 
Comparison results of ODF-SCSS-jSO with other state-of-the-art DEs.  

vs. win tie lose win tie lose 
10-D 30-D 

PaDE 12 10 7 13 8 8 
L-SHADE-SP 8 12 9 12 17 0 
EBL-SHADE 8 13 8 13 13 3 
EaDE 7 12 10 11 16 2  

50-D 100-D 
PaDE 19 6 4 24 2 3 
L-SHADE-SP 13 15 1 24 5 0 
EBL-SHADE 20 6 3 23 5 1 
EaDE 15 12 2 24 5 0  

Table 23 
Overall performance comparisons of ODF-SCSS-jSO with other state-of-the-art 
DEs according to Holm, Hochberg and Hommel procedures.   

unadjusted p pHolm pHochberg pHommel 

PaDE <1E-6 <1E-6 <1E-6 <1E-6 
L-SHADE-SP 7.1E-4 7.1E-4 7.1E-4 7.1E-4 
EBL-SHADE <1E-6 <1E-6 <1E-6 <1E-6 
EaDE 1.9E-3 1.9E-3 1.9E-3 1.9E-3  
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baselines. 
Parameters for these state-of-the-art DEs are from the corresponding 

literature since the CEC2017 test suite was originally used. The best, 
worst, median, mean and standard deviation values obtained by ODF- 
SCSS-jSO are presented in Table S10 and the detailed results in the 
format required by the CEC competition are provided as supplementary 
data. From the comparison results in Tables S11 and 22, the ODF variant 
performs better than the four compared DEs in the 30-, 50- and 100-D 
cases and comparably in the 10-D case. It is also observed that the su-
periority becomes more significant as the dimensionality increases. The 
reason lies in that ODF considers the dimensional level difference and 
might be more suitable for handling many variables. From Table 23, the 
ODF variant is statistically better in all the cases compared with all the 
considered DEs.  

(2) Flexibility on the CEC2022 test suite 

The previous experiments employed the CEC2017 test suite as the 
standard benchmark for verifying the performance of ODF. To further 
examine the flexibility on a wider variety of functions, we consider the 
CEC2022 test suite, which consists of twelve functions with the di-
mensionalities of 10 and 20, respectively. Following the requirement in 
[67], the maximum number of function evaluations is set as 200,000 and 
1000,000 for the 10-D and 20-D functions, respectively. For a compar-
ison, we consider the NL-SHADE-LBC (Non-linear population size 
reduction success-history adaptive DE with linear bias change) [68] 
algorithm, which is the best performing pure DE algorithm and the 
second-best competitor in the CEC2022 competition. 

Table S12 shows the best, worst, median, mean and standard devi-
ation values obtained by ODF-SCSS-jSO and the detailed results in the 
format required by the CEC competition are provided as supplementary 
data. The comparison results of ODF-SCSS-jSO with NL-SHADE-LBC are 
collected in Table 24, from which NL-SHADE-LBC performs better on the 
10-D functions with better and worse performance on 4 and 2 functions, 
respectively. In the 20-D case, ODF-SCSS-jSO is better with the “win/ 
lose” metric of “3/1′′. Overall, it is seen that the advantage of ODF is 
more significant in the high- dimensional case, which is in consistent 

with the previous observation on the CEC2017 functions. 

5. Conclusion 

In this paper, an objective-dimension feedback (ODF) based method 
has been proposed to fully utilize the objective and dimension space 
knowledge for performance enhancement of DE. In ODF, diversity 
ranking of each dimension and fitness ranking of individuals are 
simultaneously used to assign the tasks of exploitation and exploration 
(with the SEiLEr mechanism) and the amount of exploitation and 
exploration capabilities (with the NDAC mechanism), respectively. In 
response to the dimension difference, as suggested by SEiLEr, collective 
dimensional learning (CDL) and single dimensional learning (SDL) are 
cooperatively implemented in each solution to generate offspring. 

Experiments have been conducted mainly on the 29 CEC2017 
benchmark functions. The results show that with SEiLEr, performance 
improvements on hybrid functions in which dimensions are with 
different properties have been observed. And with OSK, exploitation and 
exploration capabilities could be distributed among dimensions for 
general performance enhancements. ODF method has also been 
compared with several OSK-, SSK- and DSK-based multi-strategy utili-
zation schemes from literature. Studies also show that ODF exhibits 
significantly superior performance. 

With respect to the utilization of OSK in ODF, FR rather than SFR was 
adopted. The reason is that credit assignments for strategies become 
difficult when assigned at the dimension level. Further investigations for 
possible solutions would be considered as future works. Another po-
tential research direction is to apply the proposed method to other kinds 
of optimization, such as constrained and multi-objective optimization 
problems [69]. 
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Table 24 
Comparison results of ODF-SCSS-jSO with NL-SHADE-LBC on the CEC2022 test 
suite.    

NL-SHADE-LBC ODF-SCSS-jSO   
mean std sig. mean std 

10-D F1 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 
F2 1.33E-01 7.28E-01 - 7.27E+00 2.36E+00 
F3 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 
F4 1.30E+00 7.91E-01 = 1.43E+00 1.13E+00 
F5 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 
F6 1.24E-01 1.27E-01 - 2.76E-01 1.59E-01 
F7 0.00E+00 0.00E+00 - 3.95E-01 3.06E-01 
F8 4.60E-02 3.87E-02 - 1.48E+00 3.77E+00 
F9 2.29E+02 8.67E-14 = 2.29E+02 0.00E+00 
F10 1.00E+02 3.00E-02 + 1.00E+02 4.22E-02 
F11 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 
F12 1.65E+02 4.11E-01 + 1.64E+02 1.12E+00 
W/T/L 2/6/4  

20-D F1 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 
F2 4.73E+01 8.97E+00 + 4.84E+01 1.59E+00 
F3 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 
F4 4.45E+00 1.42E+00 = 4.34E+00 1.68E+00 
F5 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 
F6 6.36E-01 5.69E-01 = 4.90E-01 1.38E-02 
F7 2.58E+00 5.84E+00 - 4.51E+00 6.18E+00 
F8 1.65E+01 6.43E+00 = 1.87E+01 3.67E+00 
F9 1.81E+02 2.89E-14 = 1.81E+02 8.67E-14 
F10 1.00E+02 2.33E-02 + 1.00E+02 1.61E-02 
F11 3.03E+02 1.83E+01 = 3.00E+02 8.44E-14 
F12 2.39E+02 4.20E+00 + 2.32E+02 8.97E-01  
W/T/L 3/8/1   
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