
Swarm and Evolutionary Computation 80 (2023) 101322

Available online 2 May 2023
2210-6502/© 2023 Elsevier B.V. All rights reserved.

Differential evolution with objective and dimension knowledge utilization

Sheng Xin Zhang a,*, Shao Yong Zheng b, Li Ming Zheng a

a College of Information Science and Technology, Jinan University, Guangzhou, China
b School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China

A R T I C L E I N F O

Keywords:
Differential evolution (DE)
Global numerical optimization
Objective space knowledge
Dimension space knowledge
Collective dimensional learning
Single dimensional learning

A B S T R A C T

Performance of differential evolution, which is one of the most competitive evolutionary algorithms, heavily
depends on the utilization of feedback information. The feedback information can be from objective, solution and
dimension spaces. To facilitate the better utilization of feedbacks for performance enhancements, this paper
proposes an objective-dimension feedback (ODF) method with two novel mechanisms to, respectively take ad-
vantages of dimension and objective space knowledge. The first mechanism, named “Small diversity dimensions
exploit, Large diversity dimensions explore” classifies dimensions into exploitation and exploration dimensions
according to their diversity rankings and assigns them with collective and single dimensional learning strategies,
respectively. The second mechanism, named “number of dimensions automatic configuring” automatically
configures the number of dimensions performing exploitation and exploration in each solution according to its
fitness ranking. Experiments on 29 benchmark functions confirm the effectiveness of ODF by performance
comparisons with single utilization of objective and dimension space knowledge, single utilization of dimen-
sional learning strategies and several objective, solution and dimension space knowledge-based methods from
literatures.

1. Introduction

The No Free Lunch theorem [1] states that on average, all algorithms
perform similarly on all problems. However, in practice, we usually
consider one specific or a specific kind of problems. A target real-world
problem usually has certain structures for an algorithm to learn. The
better an algorithm learns to fit the problem, the better performance it
might achieve. The quality of learning depends on the sufficiency of
learning sources and the design of learning methods.

As an efficient global optimizer, differential evolution (DE) [2–7]
evolves a group of solutions with three typical genetic operations,
including differential mutation, dimension-wise crossover and
one-to-one selection. In the past two decades, researchers have
improved its performance by designing various learning methods for
mutation strategies [8–14] as well as control parameters [15–23]. For
learning, the source data can be objective space knowledge (OSK), so-
lution space knowledge (SSK) and dimension space knowledge (DSK).
OSK describes the information collected based on fitness, such as the
fitness comparison of parent and offspring and the fitness ranking of
solutions. SSK estimates the distribution of solutions with the consid-
eration of all dimensions as a unity, such as the distance among

solutions. While DSK refers to the information derived from the
dimension level of solutions, such as the dimension correlation and
dimension difference.

In DE, the success/fail of mutation strategy and control parameters
can be observed from the parent-offspring one-to-one fitness compari-
son. This kind of OSK has been widely applied for constructing DE al-
gorithms, such as SaDE (strategy adaptive DE) [9], jDE (Janez’s DE)
[15], JADE (Jingqiao and Arthur ’s DE) [8], SHADE (success-history
adaptive DE) [16], GLCDE (global-local cooperative DE) [24], CSDE
(cooperative strategy-based DE) [25], L-SHADE (SHADE with linear
population size reduction) [17] and its improved variants [26–29]. With
the population feature, OSK in DE can also be the fitness ranking. Fitness
ranking has also been used for improving DE, such as rank-DE (ran-
king-based mutation for DE) [10], IDE (individual dependent DE) [20],
CIPDE (collective information powered DE) [12] and DSNDE (dynamic
scale-free network-based DE) [30]. SSK has been used for offspring
generation [31] and mutation [32]. DSK has been utilized for improving
DE’s crossover by considering the dimension correlation [33] and the
enhancement of population diversity by considering the dimension
convergence [34]. It is observed that in OSK-based methods, DSK is
usually neglected and vice versa. Fully utilizing OSK and DSK may be
beneficial to learn problem characteristics and improve the

* Corresponding author.
E-mail address: zhangsx@jnu.edu.cn (S.X. Zhang).

Contents lists available at ScienceDirect

Swarm and Evolutionary Computation

journal homepage: www.elsevier.com/locate/swevo

https://doi.org/10.1016/j.swevo.2023.101322
Received 1 October 2022; Received in revised form 15 April 2023; Accepted 25 April 2023

mailto:zhangsx@jnu.edu.cn
www.sciencedirect.com/science/journal/22106502
https://www.elsevier.com/locate/swevo
https://doi.org/10.1016/j.swevo.2023.101322
https://doi.org/10.1016/j.swevo.2023.101322
https://doi.org/10.1016/j.swevo.2023.101322
http://crossmark.crossref.org/dialog/?doi=10.1016/j.swevo.2023.101322&domain=pdf

Swarm and Evolutionary Computation 80 (2023) 101322

2

performance.
This paper proposes an objective-dimension feedback (ODF) method

with two novel mechanisms for better utilization of DSK and OSK,
respectively. The first mechanism, named “Small diversity dimensions
exploit, Large diversity dimensions explore” (SEiLEr) evaluates the
evolution differences of dimensions and assigns the diversity rankings.
Dimensions with small diversity perform an exploitative search by
collectively learning from the corresponding dimensions of multiple
fittest solutions while dimensions with large diversity perform an
explorative search by single learning from dimension of fittest solutions.
The second mechanism, named “number of dimensions automatic
configuring” (NDAC) takes advantages of OSK to determine the number
of dimensions performing exploitative search to improve convergence or
explorative search to alleviate local minima in each solution by utilizing
its fitness ranking.

Fig. 1 illustrates the differences in strategy assignment among
existing OSK-, DSK-based methods and the ODF method. In the OSK-
based method [9,20] (subplot (a)), the same strategies are distributed
to all the D dimensions without considering the dimension differences (i.
e. DSK is neglected). In the DSK-based method [34] (subplot (b)), an
exploitative strategy is first performed for all the dimensions, then some
of the dimensions will perform a diversity enhanced explorative strategy
when they converge or stagnate. OSK is not considered to make strategy
assignment differences among individuals. While in the proposed
ODF-based method (subplot (c)), the assignment of strategies depends
on both the fitness ranking of individuals and the diversity ranking of
dimensions (Details will be given in Section III). Consequently, strate-
gies are distinguishable among both dimensions and individuals and the
amount of exploitation and exploration could be adjusted in different
dimensions and individuals. Moreover, ODF includes new mechanisms
for better utilization of DSK and OSK, as will be introduced in Section III.

The main contributions of this paper can be summarized as follows:

(1) For the utilization of DSK and OSK, SEiLEr and NDAC mecha-
nisms are, respectively designed. ODF thus distributes strategies
by simultaneously taking advantage of DSK and OSK, which is
significantly different from existing methods.

(2) Collective and single dimensional learning strategies are pro-
posed for the cooperation of exploitation and exploration in a
single solution but different dimensions.

(3) Benefits of the proposed SEiLEr and NDAC mechanisms, the
dimensional learning strategies and the simultaneous consider-
ation of DSK and OSK are verified by experiments conducted on
29 CEC2017 benchmark functions [35]. The working mecha-
nisms are also investigated and explained.

Nomenclature

OSK Objective space knowledge
SSK Solution space knowledge
DSK Dimension space knowledge
ODF Objective-dimension feedback
SEiLEr Small diversity dimensions exploit, Large diversity

dimensions explore
NDAC Number of dimensions automatic configuring
CDL Collective dimensional learning
SDL Single dimensional learning

Fig. 1. Illustration of strategy assignment in OSK-, DSK- and ODF-based methods to a population with NP D-dimensional individuals.
Ei: Exploitative, Er: Explorative.

S.X. Zhang et al.

Swarm and Evolutionary Computation 80 (2023) 101322

3

The rest of this paper is organized in order. Section 2 presents a re-
view of related works with the utilization of different kinds of knowl-
edge. Section 3 describes the proposed method in details. The
experimental results and discussions are presented in Section 4. Finally,
Section 5 concludes this paper.

2. Literature review

In this section, we first describe the classic DE algorithm. Following,
related works on multi-strategy DE with utilization of OSK, SSK and DSK
are reviewed with a summary presented in Table 1.

2.1. DE

Constructed based on the population concept, DE explores a search
space by iteratively performing three genetic operations, i.e. mutation,
crossover and selection.

At the beginning, i.e. generation G = 0, a population PG = { x→1,G,

x→2,G,⋯, x→NP,G}with NP D-dimensional individuals is randomly sampled
from the search space.

Mutation: DE mutates an individual by adding one or more differ-
ential vectors to a basic vector. Some widely used mutation strategies
include:

DE/rand/1:

v→i,G = x→r1 ,G + F
(

x→r2 ,G − x→r3 ,G

)

(1)

DE/best/1:

v→i,G = x→best,G + F
(

x→r1 ,G − x→r2 ,G

)

(2)

DE/current-to-best/1:

v→i,G = x→i,G + F
(

x→best,G − x→i,G

)

+ F
(

x→r1 ,G − x→r2 ,G

)

(3)

where r1, r2 and r3 are three random integers from{1,2,⋯,NP}and are
mutually different. x→best,G is the best solution in the current population
and F is a scaling factor within (0,1].

Crossover: Following mutation, crossover is performed on each
mutant individual v→i,Gand its corresponding target individual x→i,G to
generate a trial individual u→i,G. The classic crossover operation is as
follows:

ui,j,G =

{
vi,j,G if randj(0, 1) ≤ CR or j = jrand
xi,j,G otherwise (4)

where randj (0,1) is a uniformly sampled random number within (0,1),
jrand is a random integer from {1,2,⋯,D} and CR is a crossover factor
within [0,1].

Selection: DE selects offspring by comparing the fitness of each pair
of trial and target individuals. The fitter one (for minimization problem
is the one with smaller fitness value) is selected into the next generation,
as follows:

x→i,G+1 =

⎧
⎪⎨

⎪⎩

u→i,G if f
(

u→i,G

)

≤ f
(

x→i,G

)

x→i,G otherwise
(5)

2.2. Multi-strategy DE with utilization of OSK

With the parent-offspring competition feature of DE, OSK can be the
success/fail replacement of parent (denoted as SFR). This knowledge has
been widely applied to strategy combination [36], strategy selection
[37] and strategy adaptation [38–48]. In DEGL (DE with global and local
strategies) [36], global and local mutation strategies are combined using
a weighting factor. Settings of the weighting factor are adaptive based
on SFR. In SaDE (strategy adaptive DE) [9], selection probabilities of
mutation strategies are dynamically adjusted based on their success/fail
history. In SaM (strategy adaptive mechanism) [38], index of mutation
strategies is treated as a control parameter and adaptively adjusted using

Table 1
Literature review of multi-strategy DEs with utilization of OSK, SSK and DSK.

Year Method For component(s) of DE Utilized
knowledge

Year Method For component(s) of DE Utilized
knowledge

2009 DEGL [36] mutation strategy OSK/SFR 2017 IDEI [49] mutation strategy and control
parameter

OSK/FR

2009 SaDE [9] mutation strategy OSK/SFR 2018 HHDE [50] mutation strategy and control
parameter

OSK/SFR+FR

2010 SaM [38] mutation strategy OSK/SFR 2018 MTDE [54] offspring generation strategy OSK/FR
2011 Adap_SS [39] mutation strategy OSK/SFR 2018 L-SHADE-RSP

[27]
mutation strategy OSK/FR

2011 EPSDE [43] mutation strategy and control
parameter

OSK/SFR 2019 NDE [53] mutation strategy OSK/FR

2011 CoDE [37] mutation strategy and control
parameter

OSK/SFR 2022 DSNDE [30] mutation strategy OSK/FR

2013 ISAMODECMA
[42]

mutation and crossover strategies OSK/SFR 2019 MLCC [51] mutation strategy and control
parameter

OSK/SFR+FR

2013 FRRMAB [40] mutation strategy OSK/SFR 2008 ODE [31] offspring generation strategy SSK
2015 SPS [45] parent selection OSK/SFR 2012 N-DE [32] mutation strategy SSK
2016 ZEPDE [44] mutation strategy and control

parameter
OSK/SFR 2015 EIG [33] crossover strategy DSK

2016 MPEDE [41] mutation strategy OSK/SFR 2015 AEPD [34] offspring generation strategy DSK
2017 ETI [46] offspring generation strategy OSK/SFR+FR 2015 CSM [55] mutation strategy OSK+SSK
2017 MVC [47] mutation strategy and control

parameter
OSK/SFR 2016 MPADE [56] mutation strategy OSK+SSK

2018 ACoS [48] crossover strategy OSK/SFR 2017 UMDE [57] mutation strategy OSK+SSK
2021 CSDE [25] mutation strategy and control

parameter
OSK/SFR 2018 UMS [58] mutation strategy OSK+SSK

2015 IDE [20] mutation strategy and control
parameter

OSK/FR 2019 TOAs [59] mutation strategy OSK+SSK

2016 TS [52] mutation strategy OSK/FR 2020 SCSS [60] mutation strategy and control
parameter

OSK+SSK

SFR: Success/fail replacement of parent, FR: Fitness ranking.

S.X. Zhang et al.

Swarm and Evolutionary Computation 80 (2023) 101322

4

parameter control methods in [8,15]. These parameter control methods
are commonly based on SFR. In Adap_SS (adaptive strategy) [39],
probabilities of mutation strategies are calculated by probability
matching and adaptive pursuit techniques. In FRRMAB (fitness-rate-r-
ank-based multiarmed bandit) [40], mutation strategies compete based
on multi-armed bandits. In MPEDE (multi-subpopulation ensemble DE)
[41], SFR is used to adjust the sizes of subpopulations for mutation
strategies. In ISAMODECMA (improved self-adaptive multi-operator DE)
[42], SFR is used for allocating mutation and crossover strategies.
EPSDE (DE with ensemble of parameter and strategy) [43] uses SFR to
distribute mutation strategies and control parameters for each individ-
ual. ZEPDE (DE with zoning evolution of parameters) [44] employs SFR
to assign appropriate mutation strategies and control the zoning evo-
lution of parameters. CoDE (composite DE) [37] uses fitness information
to select the fittest offspring from three candidates generated by three
pairs of mutation strategies and parameters. SPS (successful-par-
ent-selecting) [45] utilizes SFR to identify the stagnation of solutions
and choose different parent selection methods. With SFR, ETI (even-
t-triggered impulsive) [46] calculates the success rate of population.
When success rate decreases to a small value, two kinds of impulses are
triggered on superior and inferior individuals, respectively. With SFR,
MVC (multi-variant coordination) [47] calculates the contributions of
different DE algorithms and adaptively assigns DE at different evolution
stages. With SFR, ACoS (adaptive coordinate system) [48] estimates the
suitability of two coordinate systems.

With the population structure of DE, OSK can also be the fitness
ranking (FR) of solutions. FR has been used to distribute mutation
strategies and control parameters [49–54]. In IDE (individual dependent
DE) [20], IDEI (improved individual dependent DE) [49], HHDE (his-
torical and heuristic-based DE) [50] and MLCCDE (multi-layer
competitive-cooperative DE) [51], individuals are evolved with strate-
gies and parameters determined by their FR. In TSDE (two-step strategy
DE) [52] and NDE (adaptive neighborhood DE) [53], strategies are
assigned to subpopulations according to FR. In MTDE (multi-topology
DE) [54], offspring is generated by individual fitness dependent topol-
ogy. In DSNDE (dynamic scale-free network-based DE) [30], FR is used
to construct a scale-free network, which determines the selection of
solutions for mutation.

2.3. Multi-strategy DE with utilization of SSK or DSK

SSK originates from the distribution of NP D-dimensional solutions,
which usually treats the D dimensions as a whole. Difference among
dimensions is not considered. In ODE (opposition-based DE) [31], a new
offspring generation method, named opposition-based learning (OBL)
was proposed for population initialization and generation jumping. OBL
generates opposite solutions by using the current solutions and the
bounds of search space. In N-DE (neighborhood mutation DE) [32],
mutation is performed within each Euclidean neighborhood, which is
constructed based on distances among solutions.

While DSK takes the correlation or difference among dimensions into
consideration. In EIG (eigenvector-based crossover operator) [33],
covariance matrix is computed by using the dimensional information of
population. In AEPD (auto-enhanced population diversity) [34], distri-
bution of each dimension is calculated at each generation. Dimensions
will be diversified when they converge or stagnate.

2.4. Multi-strategy DE with utilization of OSK and SSK

In CSM (cheap surrogate model-based multi-operator search) [55],
density is computed by using distances among individuals. In order to
make fitter solutions contribute more, fitness ranking information is also
used for the calculation of density. In MPADE (multiple sub-populations
adaptive DE) [56], solutions for mutation are selected with the consid-
eration of their solution space distances. Besides, different mutation
strategies are assigned to sub-populations with different fitness values.

In UMDE (underestimation assisted multistage DE) [57], abstract
convex underestimation (ACUM) which is used to estimate the evolution
stage, is constructed based on fitness and the distribution of solutions in
solution space. In UMS (underestimation-based multimutation strategy)
[58], cheap ACUM is employed to filter an offspring from multiple
candidates. In TOAs (team of optimization algorithms) [59], solution
quality is measured by combining fitness difference with solution space
distance to the optimal solution. In SCSS (selective candidate with
similarity selection rule) [60], multiple candidates are sampled for each
current solution with different strategies and control parameters. The
final candidate is selected based on the fitness ranking of the current
solution and its solution space distance to the corresponding candidates.

To summarize, the above methods are tabulated in Table 1.

3. Proposed method

3.1. Motivation

DE, as a classic evolutionary algorithm, evolves a group of NP
candidate solutions. Each solution could prefer a certain evolution di-
rection, i.e. to exploit or to explore based on its current status. Further,
for each solution, exploitation and exploration needs may be different
for the D dimensions. Therefore, it is necessary to detect the charac-
teristic of dimensions, classify and assign them with appropriate
exploitation and exploration search strategies, which is the focus of this
paper.

For black-box optimization, an appropriate assignment of strategies
requires sufficient utilization of the feedbacks from both objective and
decision spaces. On the one hand, strategies have been assigned to so-
lutions at the individual level [20, 49–54]. However, since the optimi-
zation of D dimensions may be asynchronous, a single strategy may not
be suitable for all the D dimensions. A typical class of such kind of
functions is the hybrid function [35], in which variables are randomly
divided into several groups with each group associated with a different
basic function. Since the basic functions have different degree of diffi-
culties and thus some dimensions of the hybrid function are relatively
easy to optimize while the others are relatively difficult. Therefore, to
measure differences at the dimension level and allocate appropriate
exploitation and exploration strategies for various dimensions could
improve the performance. On the other hand, at the population level,
the amount of exploitation and exploration needs in solutions might
vary according to their status (e.g. fitness) in the population. Thus, the
number of dimensions performing exploitation and exploration in each
solution should be configured.

With the above considerations, this paper proposes the objective-
dimension feedback (ODF) method with two novel mechanisms,
namely SEiLEr and NDAC which simultaneously merges DSK with OSK.
Further, to meet different search requirements in different dimensions,
exploitative collective dimensional learning strategy which merges the
dimension information of multiple promising solutions and explorative
single dimensional learning strategy which learns from single dimension
are proposed to implement a dimension level search strategy adaptation.
They are described in the following subsections step by step.

3.2. Utilization of DSK in ODF: SEiLEr mechanism

In real-world optimization problems, different subcomponents of
variables may have different properties [35]. To detect their properties
and better assign exploitative or explorative search strategies, the
SEiLEr (“Small diversity dimensions exploit, Large diversity dimensions
explore”) mechanism is proposed. The working flows are as follows:
From the beginning, diversity of each dimension j at each generation G is
calculated as

dj,G =
1

NP
∑NP

i=1

(
xi,j,G − xj,G

)2
(6)

S.X. Zhang et al.

Swarm and Evolutionary Computation 80 (2023) 101322

5

where xj,G = (1 /NP)
∑NP

i=1xi,j,G is the center of the j-th dimension. Af-
terwards, dj,G {j = 1, 2,…, D} is sorted in ascending order and assigned a
diversity ranking value Rdj, G from{1,2,⋯,D}, as shown in Eq. (7),

Rdj,G←sort
(
dj,G

)
(7)

Consequently, Rdj, G = 1 is for the dimension with the smallest di-
versity while Rdj, G = D is for the one with the largest diversity, as
illustrated in Fig. 2.

In principle, dimensions with Small Rdj, G values will perform an
exploitative dimensional search while those with Large Rdj, G values will
perform an explorative dimensional search. It is based on the following
considerations. Small diversity dimensions converge faster, implying
that they may be relatively easy to optimize. For hybrid functions, these
dimensions may come from the relatively simple functions, thus, they
are consistently assigned exploitation task to benefit convergence. While
for dimensions with large diversity, the large diversity indicates that
they are relatively hard to converge, therefore they are assigned
exploration task to help maintain population diversity. Consequently,
SEiLEr mechanism classifies dimensions into exploitation and explora-
tion dimensions.

For demonstration, an illustrative experiment was conducted on the
SHADE [16] algorithm with the SEiLEr mechanism on ten 30-D
CEC2017 hybrid functions F11-F20 [35]. Each hybrid function con-
sists of several groups of variables with each group associated with one
basic function. The number of groups and the number of variables in
each group are shown in Table 2 while the basic function in each group
is shown in Table 3. In our methodology, Rdj, G of each dimension j at
each generation was recorded and finally the average ranking value aRdj
of each dimension j over the entire evolution process was obtained.
According to SEiLEr (i.e. small ranking value dimensions assigned an
exploitative task while large ranking value dimensions assigned an
explorative task) and assuming that the exploitative and explorative
percentages are both 50%, i.e. half of the dimensions with ranking
values smaller than D/2 performs an exploitative task while the rest
performs an explorative task. Then, statistically, dimension j with aRdj
< D/2 is mainly assigned an exploitative task while dimension j with
aRdj > D/2 is mainly assigned an explorative task. Therefore, in each

group, we know which dimensions perform an exploitative task and
which dimensions perform an explorative task. The exploitative task
ratio REi and explorative task ratio REr within each group can be,
respectively calculated as the number of dimensions performing
exploitative and explorative tasks divided by the total number of di-
mensions within the group. The larger value L of REi and REr is defined as
the homogeneity in the group. L value and the corresponding task are

Fig. 2. An example of assigning ranking to dimension according to its relative diversity.

Table 2
The ten 30-D cec2017 hybrid functions F11-F20 [35].

Fun. Number of
groups

Number of
variables in each
group

Fun. Number of
groups

Number of
variables in each
group

F11 3 (6, 12, 12) F16 4 (6, 6, 9, 9)
F12 3 (9, 9, 12) F17 5 (3, 6, 6, 6, 9)
F13 3 (9, 9, 12) F18 5 (6, 6, 6, 6, 6)
F14 4 (6, 6, 6, 12) F19 5 (6, 6, 6, 6, 6)
F15 4 (6, 6, 9, 9) F20 6 (3, 3, 6, 6, 6, 6)

Table 3
Basic function in each group of the hybrid functions [35].

Fun. Group index

1 2 3 4 5 6

F11 f2 f3 f4 NA NA NA
F12 f8 f7 f1 NA NA NA
F13 f1 f3 f6 NA NA NA
F14 f8 f10 f16 f4 NA NA
F15 f1 f14 f4 f3 NA NA
F16 f5 f14 f3 f7 NA NA
F17 f12 f10 f15 f7 f4 NA
F18 f8 f10 f4 f14 f9 NA
F19 f1 f4 f15 f11 f5 NA
F20 f13 f12 f10 f4 f7 f16

Unimodal basic functions f1: Bent Cigar; f2: Zakharov; f8: High Conditioned
Elliptic; f9: Discus; Multimodal basic functions f3: Rosenbrock; f4: Rastrigin;
f5: Expanded Schaffer’s F6; f6: Lunacek bi-Rastrigin; f7: Modified Schwefel; f10:
Ackley; f11: Weierstrass; f12: Katsuura; f13: HappyCat; f14: HGBat; f15:
Expanded Griewank plus Rosenbrock; f16: Schaffer’s F7; NA: Not available.

S.X. Zhang et al.

Swarm and Evolutionary Computation 80 (2023) 101322

6

reported in Table 4.
With respect to the L value, it can be seen from Table 4 that in most

(more than half) of the groups, L reaches 100%. We know that if
exploitative and explorative tasks are randomly assigned to the di-
mensions, then, take a group with 12 dimensions (F11, Group 2) for
example, L value is likely to be near 50%. The probability to be 100% is
(1 + 1)/212 = 1/2048, which is quite small. However, with SEiLEr, from
Table 4, L is 100%. Thus, it is concluded that SEiLEr significantly in-
creases the homogeneity of exploitative and explorative tasks within
each group.

With respect to the type of functions, from Tables 3 and 4, it is
observed that for the group with relatively simple basic function,
including Bent Cigar (f1), Zakharov (f2), High Conditioned Elliptic (f8)
and Discus (f9) functions with unimodal feature, they are consistently
assigned with mainly the exploitation task (highlighted with gray
background in Table 4), indicating that SEiLEr correctly detects the
dimension difficulty. The optimization performance of SEiLEr on hybrid
functions will be further demonstrated by comparative experiments in
Section 4.3.

The pseudo-code of SEiLEr is shown in Algorithm 1. The parameter
NoD (Number of Dimensions) in line 4 is calculated according to OSK, as
will be introduced in Section 3.3. The exploitative collective dimen-
sional learning (line 5) and explorative single dimensional learning (line
7) will be described in Section 3.4.

From the above descriptions, it is seen that SEiLEr is significantly
different from AEPD [34], as summarized in the following three aspects:

(1) The working mechanism and trigger condition are different.
AEPD triggers exploration when dimensions converge or stag-
nate. While SEiLEr performs exploitation on small diversity

dimensions and exploration on large diversity dimensions and
works from the beginning of the optimization. AEPD acts in a
passive way while SEiLEr is an active way.

(2) AEPD measures the diversity of dimensions in isolation with the
relative diversity among dimensions being neglected. Specif-
ically, a threshold parameter was introduced in AEPD to decide
whether a dimension converges/stagnates or not. While SEiLEr
evaluates the relative diversity among dimensions by the sorting
and ranking operations.

(3) SEiLEr takes advantages of OSK to adjust the amount of exploi-
tation and exploration in dimension while AEPD does not as
AEPD merely utilizes the convergence information of the
dimension value.

3.3. Utilization of OSK in ODF: NDAC mechanism

The proposed number of dimensions automatic configuring (NDAC)
mechanism works as follows: From the beginning, solutions in the
population Pi, G {i = 1, 2 , …, NP} are sorted from the best to the worst
and assigned fitness ranking values Rfi, G from 1 to NP. Rfi, G is used to
determine the number of dimensions performing CDL/SDL, i.e. the
parameter NoD in Algorithm 1 (line 4), as calculated in the followings:

NoD = min
(
floor

(
Rfi,G ×Dα /NP

)
,D

)
(8)

α = 1 + 2 × FES/Max FES (9)

where floor (⋅) denotes a floor value, min (a, b) is a smaller value of a and
b, FES is the currently consumed function evaluations while Max_FES is
the maximum number of evaluations. From these equations, the
following principles can be observed:

(1) The setting of NoD is associated with the dimensionality D and
population size NP to distribute the D dimensions to the NP
individuals.

(2) Inferior solutions with large Rfi, G values are assigned more di-
mensions encouraging exploitation to help them jump out from
inferior dimension values.

(3) With α, at the early evolution stage, NoD is relatively small to
encourage exploration, but as the evolution goes on, more and
more dimensions will perform an exploitative strategy. Fig. 3
shows NoD against Rfi with different FES values when NP=100
and D = 30. It can be seen that at the beginning (blue line), NoD

Table 4
Homogeneity and corresponding task in each group with SEiLEr method.

Algorithm 1
SEiLEr.

1: Sort dimensions according to diversity and store the ranking values in Rdj, G {j
= 1, 2, …, D};

2: For i = 1: NP
3: For j = 1: D
4: If Rdi,j,G < NoD // NoD: Number of Dimensions
5: Perform exploitative collective dimensional learning (CDL) on

dimension j;
6: Else
7: Perform explorative single dimensional learning (SDL) on dimension j;
8: End If
9: End For
10: End For Fig. 3. NoD against Rfi with different FES values.

S.X. Zhang et al.

Swarm and Evolutionary Computation 80 (2023) 101322

7

increases with Rfi while at the final generation (red line), NoD is D
(i.e. 30) for all the solutions.

Combining SEiLEr with NDAC, pseudo-code of the proposed ODF
method is shown in Algorithm 2. ODF is further illustrated in Fig. 4.
From Figs. 3 and 4, it is seen that the choice of an exploitative/explor-
ative strategy for each dimension is cooperatively determined by the
dimension diversity ranking, the fitness ranking and the current evolu-
tion stage. The individual contribution of DSK and OSK will be identified
by experiments in Section 4.2.

3.4. Collective and single dimensional strategies

The collective and single dimensional learning strategies included in
Algorithm 2 (lines 7 and 9) are described as follows.

Collective dimensional learning (CDL): CDL consists of collective

mutation and collective crossover. The population PG is first sorted ac-
cording to fitness from best to worst. Thus, x→1,G and x→NP,G are the best
and worst solutions, respectively. Assuming that o is the dimension to
perform CDL:

Collective mutation:

vi,o,G = xi,o,G + F⋅
(
xci mbesti ,o,G − xi,o,G

)
+ F⋅

(
xr1,o,G − xr2,o,G

)
(10)

where xr1,o,G is randomly selected from PG and xr2,o,G is randomly
selected from the union population of PG and recently replaced NP
solutions.xci mbesti ,o,Gis the weighted average of the top-m fittest solutions
for the o-th dimension, as calculated in Eq. (11)

xci mbesti ,o,G =
∑m

k=1
wk × xk,o,G (11)

where m is a random integer from{1,2,⋯, i} andwk is a normalized
value as wk =

(m− k+1)
(1+2+⋯+m)

, fork = 1,2, ...,m. The smaller the k value, the
fitter the solution, and consequently the larger wk. Therefore, the
dimension of superior solutions has more contribution to xci mbesti ,o,G.
The collective mutation is similar to the classic “current-to-best” muta-
tion with the o-th dimension of the best vector replaced by xci mbesti ,o,G.

Collective crossover:
For the collective crossover, we employ UN_UP (i) as the unsuccessful

update counter for each individual i. At the beginning, UN_UP(i) is 0.
Then, in the selection of DE, if offspring u→i,G is better than parent x→i,G,
UN_UP (i) is set to 0, otherwise, UN_UP (i) increases by 1. From the
collective crossover operation shown in Eqs. (12) and (13), it is seen that
if UN_UP (i) is smaller than the threshold value T (T = 90 [12]), then
classic crossover (i.e. Eq. (12)) is used. Otherwise, collective crossover (i.
e. Eq. (13)) is performed. The difference between collective and classic
crossover is that in collective crossover, collective vector xci mbesti ,o,G is
used to help stagnated solutions escape from stagnation.

Algorithm 2
ODF.

1: Sort the population according to fitness and store the ranking values in Rfi, G {i
= 1, 2, …, NP};

2: Sort dimensions according to diversity and store the ranking values in Rdj, G {j
= 1, 2, …, D};

3: For i = 1: NP
4: NoD = min (floor (Rfi, G × Dα/NP), D);
5: For j = 1: D
6: If Rdi,j,G < NoD
7: Perform exploitative collective dimensional learning (CDL), i.e. Eqs.

(10), (12) and (13) as will be introduced in Section 3.4 on dimension j;
8: Else
9: Perform explorative single dimensional learning (SDL) i.e. Eqs. (14)

and (15) as will be introduced in Section 3.4 on dimension j;
10: End If
11: End For
12: End For

Fig. 4. Illustration of the ODF method.

S.X. Zhang et al.

Swarm and Evolutionary Computation 80 (2023) 101322

8

If UN_UP(i) ≤ T

ui,o,G =

{
vi,o,G if rando(0, 1) ≤ CR or o = orand

xi,o,G otherwise
(12)

Else

ui,o,G =

{
vi,o,G if rando(0, 1) ≤ CR or o = orand

xci mbesti ,o,G otherwise
(13)

End If
Single dimensional learning (SDL): SDL consists of single mutation and

single crossover. Assuming that q is the dimension to perform SDL:
Single mutation:

vi,q,G = xi,q,G + F⋅
(
xpbest,q,G − xi,q,G

)
+ F⋅

(
xr1,q,G − xr2,q,G

)
(14)

where xr1,q,Gis randomly selected from PG and xr2,q,G is randomly
selected from the union population of PG and recently replaced NP so-
lutions. xpbest,q,Gis the q-th dimension of one of the top-p fittest solutions.

Single crossover:

ui,q,G =

{
vi,q,G if randq(0, 1) ≤ CR or q = qrand

xi,q,G otherwise
(15)

Although the principles of these mutation and crossover operations
inherit from CIPDE [12] and JADE [8], a significant difference is that in
this proposal, these operations operate at the same individual but
different dimensions. Fig. 5 illustrates how CDL and SDL operations at
an individual. For CDL, dimensions, such as “D− 2′′ and “3′′ learn from
collective dimensions of top-fittest solutions. While for SDL, dimensions,
such as “D− 3′′ and “1′′ learn from single dimension of top-fittest indi-
vidual. In this way, CDL and SDL cooperate at an individual to generate a
new offspring. Since CDL collectively utilizes the multiple dimensions of
promising solutions, it accelerates the information flow among in-
dividuals and exhibits a more exploitative characteristic when compared

with SDL. Moreover, since CDL and SDL are implemented at the
dimension level, it facilitates the adaptation and cooperation of
exploitative and explorative search strategies for dimensions. Exploita-
tion and exploration capabilities of CDL and SDL as well as the benefit of
the cooperative mechanism will be verified by experiments in Section
4.1.

3.5. Time complexity of the proposed mechanisms

The time complexity of diversity calculation and diversity ranking in
the SEiLEr mechanism is O(NP × D) and O(D × log2D), respectively at
each generation. The time complexity of fitness ranking in the NDAC
mechanism is O(NP × log2NP) at each generation. Thus, the overhead of
the proposed mechanisms at each generation is O(NP × D + D ×
log2D+NP × log2NP).

4. Experimental results

In this section, experiments are performed to verify the effectiveness
of the proposed ODF method. The CEC2017 [35] test suite, which
consists of 30 functions, is considered. Note that function F2 has been
removed [35] because of its instability, so there are 29 functions tested.
Performance of algorithm is measured using error value, defined as f(x) -
f(x*), where x is the best solution obtained with the maximum function
evaluations of 10,000 × D while x* is the optimal solution of the func-
tion. For each function, 51 trials [35] are performed and the Wilcoxon’s
signed rank test [61] with a significance level of 5% is used to compare
the performance of two algorithms. When the considered algorithm is
significantly better than (i.e. win, W), similar to (i.e. tie, T) or worse than
(i.e. lose, L) the compared algorithm, we mark it using “+”, “=” and “-”,
respectively. For the setting of control parameters F and CR, parameter
control method in SHADE [16] is adopted. Besides, the population size
NP is set as 100. Pseudo-code of ODF-based DE, i.e. ODFDE is shown in
Algorithm 3.

Fig. 5. An example that CDL and SDL cooperate at an individual.

S.X. Zhang et al.

Swarm and Evolutionary Computation 80 (2023) 101322

9

4.1. Comparison with single SDL and CDL utilization

In the ODF method, SDL and CDL are cooperatively used for offspring
generation. To show the benefit, it is compared with single methods, in
which SDL and CDL are, respectively adopted for all the dimensions at
all time. Table 5 shows the comparison results on 30-D and 50-D func-
tions. From Table 5, ODF performs significantly better than both single
methods. In the total of 116 cases, it outperforms in 78 and

underperforms in 6 cases. More specifically, it performs better than SDL
and CDL in 42 (=25+17), 36 (=16+20) cases and loses in 2 (=1 + 1), 4
(=2 + 2) cases, respectively. Compared with the baselines, ODFDE
mainly loses on the unimodal function F3, which indicates that the
proposed dimension-level strategy allocation is not suitable for solving
this problem.

CDL exhibits a general more exploitative characteristic than SDL on
all the twenty-nine functions. As an example, Fig. 6 plots the achieved
final diversity of dimensions by SDL and CDL on 30-D simple multi-
modal function F5 and hybrid function F15. It is observed that on
most of the 30 dimensions, CDL achieves smaller diversity than SDL.
Fig. 7 shows the advantages of CDL and SDL on the twenty-nine 30-D
CEC2017 functions. As seen, CDL is better than SDL on 8 functions (i.
e. F4, F5, F7, F8, F10, F20, F21, F29) while SDL is better than CDL on
other 8 functions (i.e. F11, F13-F15, F18, F19, F25, F30). Nevertheless,
according to Table 5, the advantage of ODF on these 16 functions is clear
with the observation that ODFDE performs better than SDL and CDL in
16 and 9 cases and worse in 0 and 1 case, respectively.

Fig. 8 shows the convergence plots of SDL, CDL and ODF over gen-
erations on 30-D simple multi-modal function F5 and hybrid function
F15. It is seen that CDL has advantages over SDL on function F5 while
SDL is more suitable for solving function F15. However, ODF achieves
better results on both functions, meaning that ODF could coordinate
both methods for a better performance.

For the total 58 cases, Table 6 shows the comparison results ac-
cording to Holm, Hochberg and Hommel procedures [62]. As shown,
ODF is statistically better when compared with both SDL and CDL.

The effectiveness of ODF is also investigated with fixed F and CR
settings of F = 0.5 and CR = 0.5. As shown in Table S1 in the supple-
mentary file, ODF still outperforms SDL and CDL with the “win/lose”
metrics of “19/6′′ and “15/1′′ in the 30-D case and “20/6′′ and “19/1′′ in
the 50-D case.

4.2. Comparison with single OSK and DSK utilization

ODF method is characterized by the simultaneous utilization of DSK
and OSK. Herein, we verify the effectiveness by comparing with the
following two variants:

OSK_only: In this variant, only OSK but no DSK is utilized. Specif-
ically, using OSK, the inferior solutions are assigned CDL while the su-
perior solutions are assigned SDL. Without DSK, CDL and SDL are not
assigned at the dimension level.

DSK_only: In this variant, only DSK but no OSK is utilized. Specif-
ically, utilizing DSK, SEiLEr (Algorithm 1) is preserved but without OSK,
the number of dimension NoD for each solution is set as a uniformly
distributed random integer within [1, D]. According to our preliminary
experiment, this random setting performs better than the other eleven
fixed NoD settings, including 0.1 × D to 0.9 × D with a step of 0.1 × D,
0.95 × D and 0.99 × D, as shown in Table 7.

Table 8 presents the comparison and summarizes the “win/tie/lose”
results. It can be observed that ODF shows advantages over OSK_only
and DSK_only with the win count much larger than the lose count i.e. 25
(=16+9) against 3 (2 + 1). This result indicates that appropriately
merging the knowledge from both objective and dimension spaces could
improve the performance.

4.3. Effectiveness of SEiLEr

In the utilization of DSK, SEiLEr mechanism encourages small di-
versity dimensions to exploit while large diversity dimensions to
explore. Section 3.2 has illustrated the reasons. To further confirm the

Algorithm 3
ODFDE.

1: Initialize a population P0 = { x→i,0, i ∈ {1,2,⋯NP}};
2: Set memory MF = 0.5, MCR = 0.5, history length H = D, initialize history index

k = 1, initialize external archiveA = ∅, set generation count G = 0;
3: While the stopping criteria are not satisfied, Do
4: Sort the population according to fitness and store the ranking values in Rfi, G

{i = 1, 2, …, NP};
5: Sort dimensions according to diversity and store the ranking values in Rdj, G

{j = 1, 2, …, D};
6: Set SF = ∅, SCR = ∅;
7: For i = 1: NP
8: NoD = min (floor (Rfi, G × Dα/NP), D);
9: Generate the scaling factor and crossover factor for SDL and CDL,

respectively, i.e.ri = randint[1,H], Fi,G = randci(MF,ri ,0.1), CRi,G =

randni(MCR,ri ,0.1), where randc(a,b) and randn(a,b) are Cauchy distribution
and normal distribution with location parameter a and scale parameter b,
respectively.

10: For j = 1: D
11: If Rdi,j,G < NoD
12: Perform exploitative collective dimensional learning (CDL), i.e. Eqs.

(10), (12) and (13) to generate trial vectorui,j,G;
13: Else
14: Perform explorative single dimensional learning (SDL) i.e. Eqs. (14) and

(15) to generate trial vector ui,j,G;
15: End If
16: End For
17: If f(u→i,G) ≤ f(x→i,G)

18: x→i,G+1 = u→i,G, A← x→i,G, SF←Fi,G , SCR←CRi,G ;
19: Else
20: x→i,G+1 = x→i,G;
21: End If
22: End For
23: If |A| > NP
24: Randomly remove |A| − NPindividuals from A;
25: End If
26: Update MF and MCR based on SF and SCR, respectively according to

Procedure 1;
27: G = G + 1;
28: End While

Procedure 1
Update MF and MCR

1:
MF,k,G+1= {

meanWL (SF) if SF ∕= ∅

MF,k,G otherwise

MCR,k,G+1= {
meanWA (SCR) if SCR ∕= ∅

MCR,k,G otherwise

where meanWA (SCR) =
∑|SCR |

m=1wm⋅SCR,m, meanWL (SF) =

∑|SF |
m=1wm⋅S2

F,m
∑|SF |

m=1wm⋅SF,m
, wm =

Δfm
∑|SCR |

m=1Δfm
, where Δfm =

⃒
⃒
⃒
⃒f(u→m,G) − f(x→m,G)

⃒
⃒
⃒
⃒

2: If SF ∕= ∅and SCR ∕= ∅
3: k = k +1;
4: If k > H
5: k = 1;
6: End If
7: End If

S.X. Zhang et al.

Swarm
andEvolutionaryComputation80(2023)101322

10

Table 5
Performance comparisons of ODFDE with SDL and CDL on 30-D and 50-D CEC2017 benchmark set over 51 independent runs.

30-D 50-D

SDL CDL ODFDE SDL CDL ODFDE

mean std sig mean std sig mean std mean std sig mean std sig mean std

F1 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00
F3 0.00E+00 0.00E+00 - 0.00E+00 0.00E+00 - 6.15E+03 1.37E+04 0.00E+00 0.00E+00 - 0.00E+00 0.00E+00 - 2.34E+04 4.54E+04
F4 5.91E+01 1.67E+00 + 4.80E+01 2.35E+01 - 5.90E+01 1.51E+00 5.45E+01 4.46E+01 = 5.09E+01 4.86E+01 = 5.79E+01 5.06E+01
F5 1.53E+01 3.14E+00 + 1.24E+01 4.98E+00 = 1.10E+01 4.85E+00 3.21E+01 5.68E+00 + 4.02E+01 1.17E+01 + 2.67E+01 5.95E+00
F6 3.87E-05 5.78E-05 + 5.63E-05 8.58E-05 + 1.75E-07 3.78E-07 8.10E-04 1.28E-03 + 3.47E-03 7.73E-03 + 1.37E-05 1.76E-05
F7 4.51E+01 2.38E+00 + 4.20E+01 4.53E+00 = 4.12E+01 4.94E+00 8.09E+01 3.51E+00 + 8.47E+01 1.04E+01 + 7.51E+01 7.98E+00
F8 1.57E+01 2.93E+00 + 1.29E+01 2.93E+00 = 1.24E+01 4.84E+00 3.39E+01 5.11E+00 + 3.99E+01 9.81E+00 + 2.70E+01 7.50E+00
F9 4.95E-02 1.11E-01 + 1.05E-01 1.73E-01 + 0.00E+00 0.00E+00 9.73E-01 9.34E-01 + 1.13E+00 1.24E+00 + 2.13E-02 9.01E-02
F10 1.67E+03 2.38E+02 + 1.47E+03 3.59E+02 = 1.49E+03 4.19E+02 3.40E+03 2.72E+02 = 3.05E+03 5.67E+02 - 3.38E+03 4.80E+02
F11 3.20E+01 2.62E+01 + 4.64E+01 3.27E+01 + 2.36E+01 2.78E+01 1.27E+02 3.11E+01 + 1.50E+02 2.80E+01 + 3.73E+01 8.59E+00
F12 1.20E+03 4.31E+02 + 1.51E+03 1.55E+03 + 5.00E+02 2.70E+02 5.96E+03 3.57E+03 = 8.20E+03 1.23E+04 = 6.83E+03 7.60E+03
F13 3.60E+01 1.63E+01 + 5.72E+01 3.33E+01 + 2.22E+01 1.56E+01 3.74E+02 4.27E+02 + 5.45E+02 4.56E+02 + 6.40E+01 5.19E+01
F14 3.04E+01 5.88E+00 + 4.95E+01 1.80E+01 + 2.37E+01 3.60E+00 2.15E+02 6.32E+01 + 2.64E+02 7.41E+01 + 3.89E+01 1.45E+01
F15 2.22E+01 1.29E+01 + 6.82E+01 5.23E+01 + 3.57E+00 1.95E+00 3.06E+02 1.39E+02 + 3.96E+02 1.19E+02 + 5.87E+01 4.01E+01
F16 2.55E+02 1.50E+02 + 3.10E+02 1.38E+02 + 1.82E+02 1.61E+02 7.44E+02 1.88E+02 + 7.06E+02 2.13E+02 + 6.07E+02 2.10E+02
F17 5.09E+01 2.68E+01 + 4.80E+01 3.07E+01 + 3.45E+01 2.81E+01 5.27E+02 1.28E+02 = 5.89E+02 1.86E+02 = 5.83E+02 2.29E+02
F18 6.06E+01 4.71E+01 + 1.35E+02 7.60E+01 + 2.44E+01 1.15E+01 1.93E+02 1.15E+02 + 1.96E+02 1.04E+02 + 7.42E+01 3.96E+01
F19 1.55E+01 1.72E+01 + 5.36E+01 3.44E+01 + 5.98E+00 2.79E+00 1.47E+02 4.60E+01 + 1.55E+02 5.01E+01 + 2.73E+01 1.22E+01
F20 7.30E+01 4.97E+01 + 7.72E+01 6.07E+01 = 7.76E+01 6.15E+01 3.29E+02 1.15E+02 = 3.45E+02 1.83E+02 = 3.73E+02 1.88E+02
F21 2.17E+02 3.80E+00 + 2.13E+02 4.82E+00 = 2.13E+02 4.56E+00 2.35E+02 4.59E+00 + 2.40E+02 9.77E+00 + 2.30E+02 7.59E+00
F22 1.00E+02 1.49E-13 + 1.00E+02 1.14E-13 = 1.00E+02 1.21E-13 3.19E+03 1.56E+03 = 3.52E+03 1.46E+03 = 3.35E+03 1.26E+03
F23 3.64E+02 4.83E+00 + 3.64E+02 8.29E+00 = 3.61E+02 7.07E+00 4.59E+02 9.53E+00 = 4.75E+02 1.63E+01 + 4.59E+02 1.57E+01
F24 4.35E+02 3.18E+00 = 4.37E+02 6.61E+00 = 4.36E+02 5.78E+00 5.30E+02 5.58E+00 = 5.49E+02 1.17E+01 + 5.30E+02 8.13E+00
F25 3.87E+02 8.04E-02 + 3.87E+02 2.57E-01 + 3.87E+02 1.92E-02 5.14E+02 3.79E+01 = 5.21E+02 4.22E+01 = 5.10E+02 3.58E+01
F26 1.08E+03 6.11E+01 = 1.08E+03 1.81E+02 = 1.07E+03 6.58E+01 1.40E+03 8.54E+01 = 1.58E+03 1.45E+02 + 1.40E+03 1.08E+02
F27 5.06E+02 6.75E+00 + 5.09E+02 8.10E+00 + 5.03E+02 5.63E+00 5.45E+02 2.64E+01 + 5.61E+02 3.05E+01 + 5.21E+02 9.76E+00
F28 3.43E+02 5.82E+01 + 3.48E+02 6.18E+01 + 3.24E+02 4.68E+01 4.89E+02 2.50E+01 + 4.92E+02 2.24E+01 + 4.67E+02 1.84E+01
F29 4.65E+02 3.52E+01 + 4.49E+02 3.08E+01 + 4.35E+02 1.55E+01 4.61E+02 9.22E+01 + 5.25E+02 1.18E+02 + 3.86E+02 6.73E+01
F30 2.09E+03 1.27E+02 + 2.21E+03 2.02E+02 + 2.02E+03 9.06E+01 7.23E+05 1.28E+05 + 6.63E+05 6.18E+04 + 6.11E+05 3.57E+04
W

T
L

25
3
1

16
11
2

17
11
1

20
7
2

S.X. Zhang et al.

Swarm and Evolutionary Computation 80 (2023) 101322

11

effectiveness from the perspective of experiment, it is compared with the
following two variants.

reverse: In this variant, small diversity dimensions perform explora-
tion while large diversity dimensions perform exploitation, termed as

SErLEi.
random: In this variant, dimensions to exploit or to explore is

random, regardless of their diversity.
Except the above differences, other settings are kept the same as

ODFDE. Table 9 shows the comparison results on 30-D functions. From
Table 9, ODFDE is significantly better than the reverse variant, winning
in 21 functions and losing in 1 function. On the ten hybrid functions F11-
F20, ODFDE performs better than the reverse variant on 9 functions
(F11, F12 and F14-F20) and similarly on 1 function (F13). Compared
with the random variant, ODFDE is better on 5 functions. Again, from
Table 9, four (F12, F15, F18 and F19) out of these five functions are
hybrid functions. Performance superiority to reverse is much more sig-
nificant because this variant always assigns exploitative and explorative
tasks against ODFDE.

To have a deeper insight into the working process, the average
number of exploitative operations in dimension within each group over
the entire evolution process is compared and the rankings among groups

Fig. 6. Achieved final diversity of dimensions by SDL and CDL on 30-D simple multi-modal function F5 and hybrid function F15.

Fig. 7. Performance comparison of SDL and CDL on the twenty-nine 30-D
CEC2017 functions.

Fig. 8. Convergence plots of SDL, CDL and ODF on 30-D simple multi-modal function F5 and hybrid function F15 in the trial with the median error value.

Table 6
Comparison results of ODFDE with single strategy according to Holm, Hochberg
and Hommel procedures.

vs. unadjusted p pHolm pHochberg pHommel

SDL 0.000351 0.000351 0.000351 0.000351
CDL <1E-6 <1E-6 <1E-6 <1E-6

S.X. Zhang et al.

Swarm and Evolutionary Computation 80 (2023) 101322

12

in descending order are shown in Table 10. The unimodal basic func-
tions are highlighted with gray background. From Table 10, these
unimodal basic functions have the highest rankings among the groups.
Among the associated hybrid functions, ODF performs better than
reverse and random on {F11, F12, F14, F15, F18, F19} and {F12, F15,
F18, F19}, respectively. The above observations demonstrate the ad-
vantages of SEiLEr for solving hybrid functions by correctly detecting
the relative function difficulties and confirm the illustration given pre-
viously in Section 3.2.

Fig. 9 plots the best fitness achieved by the reverse variant and
SEiLEr over generations on functions F5 and F15. It was known from
Fig. 6 that F5 requires relatively more exploitation while F15 needs
relatively more exploration. Fig. 9 implies that on both functions, SEiLEr
obtains better results, indicating that SEiLEr maintains a better exploi-
tation and exploration balance than the reverse variant and exhibits a
more reliable performance for different types of optimization tasks.

To show the differences in decision space, Fig. 10 presents the di-
versity comparison. From this figure, SEiLEr has a faster diversity

decrease than the reverse variant on F5 while a relatively slower di-
versity decrease on F15. This correctly matches the exploitation/
exploration needs of F5 and F15.

4.4. Comparison with OSK-based multi-strategy DEs

In literature, many OSK-based multi-strategy methods have been
proposed. The following six methods are considered for performance
comparisons with ODF:

ETI-SHADE: Event-triggered impulsive control-based SHADE [46];
SaM-SHADE: Strategy adaptive [38] SHADE;
SaDE: Strategy adaptive DE [9];
IDE: Individual-dependent DE [20];
ACoS-SHADE: Adaptive coordinate system [48] improved SHADE;
MLCCDE: Multi-layer competitive-cooperative DE [51].
To tune the comparison algorithms, which did not use the CEC2017

functions in the original paper for the best performance, the key pa-
rameters that mainly affect the performance of the algorithms are

Table 7
Performance comparison results of DSK_only with other NoD values.

vs. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99

win 19 18 20 19 17 20 15 15 6 10 7
tie 10 11 8 9 11 9 14 14 21 19 21
lose 0 0 1 1 1 0 0 0 2 0 1

Table 8
Performance comparisons of ODFDE with single OSK and DSK on 30-D CEC2017 benchmark set over 51 independent runs.

OSK_only DSK_only ODFDE

mean std sig mean std sig mean std

F1 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00
F3 0.00E+00 0.00E+00 - 1.40E+04 1.56E+04 + 6.15E+03 1.37E+04
F4 4.33E+01 2.68E+01 - 5.76E+01 8.30E+00 - 5.90E+01 1.51E+00
F5 9.99E+00 2.83E+00 = 1.16E+01 3.54E+00 = 1.10E+01 4.85E+00
F6 4.55E-05 6.70E-05 + 4.50E-07 1.07E-06 = 1.75E-07 3.78E-07
F7 3.93E+01 2.41E+00 = 4.23E+01 3.34E+00 + 4.12E+01 4.94E+00
F8 1.20E+01 2.86E+00 = 1.24E+01 3.78E+00 = 1.24E+01 4.84E+00
F9 1.03E-01 2.23E-01 + 1.42E-02 6.64E-02 + 0.00E+00 0.00E+00
F10 1.51E+03 3.77E+02 = 1.43E+03 3.15E+02 = 1.49E+03 4.19E+02
F11 4.07E+01 2.56E+01 + 3.79E+01 2.93E+01 + 2.36E+01 2.78E+01
F12 1.27E+03 5.38E+02 + 4.85E+03 3.90E+03 + 5.00E+02 2.70E+02
F13 5.87E+01 3.61E+01 + 4.13E+01 2.99E+01 + 2.22E+01 1.56E+01
F14 5.26E+01 1.95E+01 + 1.92E+01 9.03E+00 = 2.37E+01 3.60E+00
F15 6.34E+01 6.47E+01 + 4.11E+00 3.14E+00 = 3.57E+00 1.95E+00
F16 3.07E+02 1.35E+02 + 2.21E+02 1.29E+02 = 1.82E+02 1.61E+02
F17 5.64E+01 4.71E+01 + 4.23E+01 2.94E+01 + 3.45E+01 2.81E+01
F18 1.28E+02 7.46E+01 + 9.22E+03 4.07E+04 = 2.44E+01 1.15E+01
F19 5.38E+01 3.34E+01 + 7.16E+00 3.08E+00 = 5.98E+00 2.79E+00
F20 8.27E+01 6.05E+01 = 5.48E+01 5.20E+01 = 7.76E+01 6.15E+01
F21 2.12E+02 3.04E+00 = 2.14E+02 3.84E+00 = 2.13E+02 4.56E+00
F22 1.00E+02 1.14E-13 = 1.00E+02 1.66E-13 = 1.00E+02 1.21E-13
F23 3.64E+02 4.67E+00 + 3.64E+02 6.62E+00 = 3.61E+02 7.07E+00
F24 4.36E+02 5.55E+00 = 4.37E+02 4.95E+00 = 4.36E+02 5.78E+00
F25 3.87E+02 2.30E-01 + 3.87E+02 2.95E-02 + 3.87E+02 1.92E-02
F26 1.06E+03 6.48E+01 = 1.06E+03 6.61E+01 = 1.07E+03 6.58E+01
F27 5.08E+02 6.85E+00 + 5.05E+02 4.95E+00 = 5.03E+02 5.63E+00
F28 3.48E+02 5.90E+01 + 3.34E+02 5.47E+01 = 3.24E+02 4.68E+01
F29 4.36E+02 2.04E+01 = 4.40E+02 3.17E+01 = 4.35E+02 1.55E+01
F30 2.18E+03 1.92E+02 + 2.09E+03 8.67E+01 + 2.02E+03 9.06E+01
W

T
L

16
11
2

9
19
1

S.X. Zhang et al.

Swarm and Evolutionary Computation 80 (2023) 101322

13

identified from the original literature. Several values of the parameters
are tested, and the best-performing parameters are obtained by the
Friedman test with the best ranking. The considered parameters, range
and the tuned values are summarized in Table S2 in the supplementary
file.

Table S3 in the supplementary file shows the comparisons on 10-, 30-
, 50- and 100-D functions while Table 11 summarizes the results. From
these tables, ODFDE performs significantly better in 30-, 50- and 100-D
cases, winning on no less than 15 functions and losing on no more than 6

functions. For instance, in the 30-D case, the “win/lose” count compared
with ETI-SHADE, SaM-SHADE, SaDE, IDE, ACoS-SHADE and MLCCDE is
“20/3′′, “24/1′′, “24/3′′, “20/2′′, “21/3′′ and “19/4′′, respectively. On the
10-D functions, IDE and MLCCDE perform much better while ODFDE is
superior to SaM-SHADE, SaDE and competitive to ETI-SHADE and ACoS-
SHADE.

Table 12 reports the achieved p valves according to Holm, Hochberg
and Hommel procedures [62]. It can be observed that ODFDE performs
statistically better than all the six DEs in all the cases except MLCCDE in

Table 9
Performance comparisons of ODFDE with the variants of SEiLEr on 30-D CEC2017 benchmark set over 51 independent runs.

reverse random ODFDE

mean std sig mean std sig mean std

F1 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00
F3 2.12E+03 8.61E+03 - 2.16E+03 8.84E+03 = 6.15E+03 1.37E+04
F4 5.85E+01 8.68E+00 + 5.80E+01 7.93E+00 = 5.90E+01 1.51E+00
F5 1.46E+01 2.96E+00 + 1.17E+01 5.20E+00 = 1.10E+01 4.85E+00
F6 9.66E-06 1.18E-05 + 7.26E-07 2.30E-06 = 1.75E-07 3.78E-07
F7 4.55E+01 3.32E+00 + 4.29E+01 4.87E+00 + 4.12E+01 4.94E+00
F8 1.67E+01 2.50E+00 + 1.33E+01 5.58E+00 = 1.24E+01 4.84E+00
F9 2.82E-02 7.35E-02 + 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00
F10 1.62E+03 2.57E+02 = 1.54E+03 3.78E+02 = 1.49E+03 4.19E+02
F11 2.83E+01 2.80E+01 + 2.18E+01 2.63E+01 = 2.36E+01 2.78E+01
F12 1.19E+03 3.75E+02 + 8.72E+02 2.98E+02 + 5.00E+02 2.70E+02
F13 2.39E+01 1.40E+01 = 2.35E+01 1.57E+01 = 2.22E+01 1.56E+01
F14 2.60E+01 3.48E+00 + 2.42E+01 2.24E+00 = 2.37E+01 3.60E+00
F15 1.23E+01 1.78E+01 + 5.18E+00 2.55E+00 + 3.57E+00 1.95E+00
F16 2.62E+02 1.27E+02 + 2.35E+02 1.67E+02 = 1.82E+02 1.61E+02
F17 4.95E+01 1.89E+01 + 3.47E+01 2.42E+01 = 3.45E+01 2.81E+01
F18 3.92E+01 2.77E+01 + 2.43E+01 3.08E+00 + 2.44E+01 1.15E+01
F19 7.81E+00 1.80E+00 + 8.49E+00 3.17E+00 + 5.98E+00 2.79E+00
F20 8.10E+01 5.67E+01 + 7.11E+01 6.08E+01 = 7.76E+01 6.15E+01
F21 2.19E+02 3.41E+00 + 2.13E+02 4.68E+00 = 2.13E+02 4.56E+00
F22 1.00E+02 1.14E-13 = 1.00E+02 1.11E-13 = 1.00E+02 1.21E-13
F23 3.64E+02 4.96E+00 + 3.60E+02 7.04E+00 = 3.61E+02 7.07E+00
F24 4.36E+02 3.87E+00 = 4.35E+02 5.24E+00 = 4.36E+02 5.78E+00
F25 3.87E+02 5.37E-02 + 3.87E+02 1.72E-02 = 3.87E+02 1.92E-02
F26 1.05E+03 1.23E+02 = 1.05E+03 7.34E+01 = 1.07E+03 6.58E+01
F27 5.05E+02 7.15E+00 = 5.04E+02 6.48E+00 = 5.03E+02 5.63E+00
F28 3.37E+02 5.67E+01 + 3.19E+02 4.12E+01 = 3.24E+02 4.68E+01
F29 4.61E+02 2.45E+01 + 4.38E+02 2.70E+01 = 4.35E+02 1.55E+01
F30 2.08E+03 1.10E+02 + 2.02E+03 9.12E+01 = 2.02E+03 9.06E+01
W

T
L

21
7
1

5
24
0

Table 10
Ranking (in descending order) of the average number of Ei operations in dimension within each group (1 denotes the highest ranking).

S.X. Zhang et al.

Swarm and Evolutionary Computation 80 (2023) 101322

14

Fig. 9. Best fitness achieved by the reverse variant and SEiLEr over function evaluations (FES) on 30-D simple multi-modal function F5 and hybrid function F15 in
the trial with the median error value.

Fig. 10. Diversity achieved by the reverse variant and SEiLEr over function evaluations (FES) on 30-D simple multi-modal function F5 and hybrid function F15 in the
trial with the median error value.

Table 11
Comparison results of ODFDE with OSK-based multi-strategy DEs.

vs. win tie lose win tie lose
10-D 30-D

ETI-SHADE 8 13 8 20 6 3
SaM-SHADE 8 19 2 24 4 1
SaDE 9 13 7 24 2 3
IDE 5 12 12 20 7 2
ACoS-SHADE 7 14 8 21 5 3
MLCCDE 5 12 12 19 6 4

50-D 100-D
ETI-SHADE 20 5 4 15 10 4
SaM-SHADE 20 8 1 18 6 5
SaDE 24 3 2 26 3 0
IDE 20 6 3 23 2 4
ACoS-SHADE 21 5 3 19 4 6
MLCCDE 20 5 4 22 4 3

Table 12
Overall performance comparisons of ODFDE with all the compared algorithms
according to Holm, Hochberg and Hommel procedures.

vs. unadjusted p pHolm pHochberg pHommel

ETI-SHADE 6E-6 1.2E-5 1.2E-5 1.2E-5
SaM-SHADE <1E-6 0.000001 0.000001 0.000001
SaDE <1E-6 <1E-6 <1E-6 <1E-6
IDE 0.000007 0.000028 0.000028 0.000028
ACoS-SHADE 0.000123 0.000123 0.000123 0.000123
MLCCDE 0.043476 0.086952 0.048882 0.048882
AEPD-SHADE <1E-6 <1E-6 <1E-6 <1E-6
SHADE/eig 0.001 0.001 0.001 0.001
CSM-SHADE <1E-6 <1E-6 <1E-6 <1E-6
SCSS-SHADE 0.048882 0.086952 0.048882 0.048882

S.X. Zhang et al.

Swarm and Evolutionary Computation 80 (2023) 101322

15

terms of Holm test.

4.5. Comparison with DSK-based multi-strategy DEs

ODFDE is further compared with two DSK-based multi-strategy DE
algorithms. They are:

AEPD-SHADE: Auto-enhanced population diversity [34] -based
SHADE;

SHADE/eig: Eigenvector-based crossover operator [33] enhanced
SHADE.

Similarly, the key parameters of these algorithms are tuned, as
shown in Table S2. From Tables S4 and 13, it is seen that ODFDE exhibits
better performance than AEPD-SHADE and SHADE/eig on all the
considered dimensionalities, outperforming on 66 (15+20+15+16) and
71 (9+19+21+22) and underperforming on 15 (4+1+3+7) and 15
(8+2+2+3) functions, respectively. This is also confirmed by Holm,
Hochberg and Hommel procedures shown in Table 12, in which ODFDE
is statistically better with the p value < 0.05.

4.6. Comparison with OSK and SSK-based multi-strategy DEs

ODFDE is also compared with OSK and SSK-based multi-strategy
methods. We consider the following two algorithms:

CSM-SHADE: Cheap surrogate model-based SHADE [55];
SCSS-SHADE: Selective candidate with similarity selection rule-

based SHADE [60].
As seen from Tables S5 and 14, ODFDE achieves better results than

CSM-SHADE and SCSS-SHADE on 90 and 56 functions and loses on 8 and
16 functions, respectively. With respect to the function dimensionality,
it is seen that ODFDE is superior to CSM-SHADE in all the cases.
Compared with SCSS-SHADE, ODFDE exhibits better performance in 30-
, 50- and 100-D cases while on the 10-D functions, SCSS-SHADE per-
forms slightly better with the “win/lose” metric of “9/6′′. Table 12
shows that ODFDE performs statistically better than CSM-SHADE ac-
cording to Holm, Hochberg and Hommel procedures and SCSS-SHADE
according to Hochberg and Hommel procedures.

Fig. 11 shows the convergence graphics of the eleven DEs from
Subsections 4–6 on twelve selected 10-, 30-, 50- and 100-D CEC2017
functions. As seen, ODFDE converges to the best fitness on 10 functions

and achieves similar performance on 1 function.

4.7. Comparison with state-of-the-art multi-strategy utilization schemes

Sections 4.4, 4.5 and 4.6 have compared ODFDE with OSK, DSK and
OSK+SSK based multi-strategy DE algorithms. It is also interesting to
test the competitiveness of ODF against other multi-strategy utilization
schemes. To this end, the following three methods are considered for
comparisons.

Sa: Strategy adaptation method proposed in [9];
CSM: Cheap surrogate model presented in [55];
SCSS: Selective candidate with similarity selection rule proposed in

[60].
Each of the three methods is, respectively implemented with SDL and

CDL and compared with ODFDE. As seen from Tables S6 and 15, ODF
outperforms Sa, CSM and SCSS on 54, 74, 50 and loses on 13, 11, 17
functions, respectively. Similar to

SCSS-SHADE, SCSS exhibits better performance in the 10-D case.
From the multi-problem comparison results shown in Table 16, ODF
consistently achieves superior performance in all the three cases. In the
case of Sa and CSM, the difference is statistically significant.

4.8. Application in real-world problems

To further evaluate the performance of ODF method, it is also
compared on ten CEC2011 [63] real-world problems, as shown in
Table S7. Thirty trials were performed for each problem with each trial
assigned 10,000 × D function evaluations. From the results summarized
in Table 17, it can be observed that ODF also performs better on the
real-world problems, winning in 6, 6 and 4 and losing in none, none and
one function when compared with Sa, CSM and SCSS, respectively.

As pointed out in [35], in real-world optimization problems,
different subcomponents of variables may have different properties. The
proposed SEiLEr mechanism optimizes subcomponents separately with
different strategies. To demonstrate its contribution in the real-world
optimization, the two variants reverse and random constructed previ-
ously in Section 4.3 are compared with ODF. As seen from Tables S8 and
18, ODF performs better than reverse and random in 6 and 4 cases and
loses in none case, confirming the effectiveness of the assignment of
exploitative and explorative tasks to subcomponents.

4.9. Time complexity of the multi-strategy utilization schemes

To study the time complexity, we follow the method suggested in
[35], as described in the followings. T0 is the time for computing the test
program below:

for i = 1:1,000,000
x = 0.55 + (double) i;
x = x + x; x = x/2; x = x*x; x=sqrt(x); x=log(x); x=exp(x); x = x/(x

+ 2); end
T1 represents the time consumed by 200,000 evaluations on 30-D

F18; T2 is average computing time over 5 trials for an algorithm to
optimize the 30-D F18 with 200,000 evaluations. Consequently,
(T2− T1)/T0 gives the complexity of the algorithm.

All the considered Sa, CSM, SCSS and ODF methods were imple-
mented using MATLAB language for fair comparisons. Table 19 shows
the experimental results. It shows that the time complexity of ODF is
lower than SCSS and CSM but higher than Sa. The reason is that
compared with SCSS and CSM, ODF does not require multiple offspring
generation and distance calculations. While compared with Sa, ODF

Table 13
Comparison results of ODFDE with DSK-based multi-strategy DEs.

vs. win tie lose win tie lose
10-D 30-D

AEPD-SHADE 15 10 4 20 8 1
SHADE/eig 9 12 8 19 8 2

50-D 100-D
AEPD-SHADE 15 11 3 16 6 7
SHADE/eig 21 6 2 22 4 3

Table 14
Comparison results of ODFDE with OSK and SSK-based multi-strategy DEs.

vs. win tie lose win tie lose
10-D 30-D

CSM-SHADE 18 10 1 26 1 2
SCSS-SHADE 6 14 9 21 7 1

50-D 100-D
CSM-SHADE 23 4 2 23 3 3
SCSS-SHADE 16 11 2 13 12 4

S.X. Zhang et al.

Swarm and Evolutionary Computation 80 (2023) 101322

16

Fig. 11. Convergence graphics of the best fitness by the compared DEs on twelve selected 10-D, 30-D, 50-D and 100-D CEC2017 functions in the trial with the
median error value. On 50-D F3 and F9, algorithms terminate when the best fitness reach 1E-08.

S.X. Zhang et al.

Swarm and Evolutionary Computation 80 (2023) 101322

17

needs to: (1) measure the dimension diversity and (2) sort the fitness and
dimension diversity. Thus, the superior performance of ODF does not
come for free.

4.10. Flexibility of the ODF method

(1) Flexibility on state-of-the-art DEs

To demonstrate the flexibility of the ODF method, it is further
incorporated with two state-of-the-art DE algorithms, namely SCSS-L-
SHADE [60] algorithm with linear population size reduction scheme and
SCSS-jSO [60], leading to two new variants named ODF-SCSS-L-SHADE
and ODF-SCSS-jSO, respectively. To fit the scheme, α in Eq. (9) is set as
1+FES/Max_FES. Parameters for the comparison algorithms are from
the corresponding literature since the CEC2017 test suite was originally
used.

Performance comparisons of ODF-SCSS-L-SHADE and ODF-SCSS-jSO
with the original DEs are shown in Tables S9 and 20. From these tables,
ODF variants perform significantly better than the original baselines in
30-, 50- and 100-D cases and are competitive in 10-D case. For instance,
when comparing ODF-SCSS-jSO with SCSS-jSO, the “win/lose” metric in
10-, 30-, 50- and 100-D cases is “6/7′′, “11/3′′, “14/4′′ and “16/1′′,
respectively. According to the comparison results given by Holm,
Hochberg and Hommel procedures in Table 21, ODF methods perform
better in all the cases and are statistically significant.

It is also interesting to investigate the performance of the constructed
ODF-SCSS-jSO against other state-of-the-art DE variants. To this end, we
consider the following four algorithms:

PaDE [22]: It is an improved L-SHADE algorithm with a new
parameter adaptation scheme;

L-SHADE-SP [64]: It is an improved jSO algorithm with a selective
pressure strategy;

EBL-SHADE [65]: It is an improved L-SHADE algorithm with novel
mutation strategies;

EaDE [66]: It is an explicitly adaptative DE based on two competitive

Table 15
Comparison results of ODF with state-of-the-art multi-strategy utilization
schemes.

vs. win tie lose win tie lose
10-D 30-D

Sa 5 19 5 17 10 2
CSM 8 18 3 23 4 2
SCSS 2 19 8 12 13 4

50-D 100-D
Sa 15 12 2 17 8 4
CSM 22 5 2 21 4 4
SCSS 17 10 2 19 7 3

Table 16
Overall performance comparisons of ODF with state-of-the-art multi-strategy
utilization schemes according to Holm, Hochberg and Hommel procedures.

vs. unadjusted p pHolm pHochberg pHommel

Sa <1E-6 <1E-6 <1E-6 <1E-6
CSM 0.000042 0.000085 0.000085 0.000085
SCSS 0.127099 0.127099 0.127099 0.127099

Table 17
Comparison results of ODF with state-of-the-art multi-strategy utilization
schemes on real-world problems.

vs. win tie lose

Sa 6 4 0
CSM 6 4 0
SCSS 4 5 1

Table 18
Contribution of SEiLEr mechanism in the real-world optimization.

vs. win tie lose

reverse 6 4 0
random 4 6 0

Table 19
Time complexity comparisons of the strategy utilization schemes (in second).

T0 T1 T2 (T2− T1)/T0

Sa 0.1073 0.7561 1.4706 6.65
CSM 15.0184 132.91
SCSS 2.795 19.00
ODF 1.6758 8.57

Table 20
Comparison results of ODF with state-of-the-art DEs.

vs. win tie lose win tie lose
10-D 30-D

ODF-SCSS- L-SHADE 3 24 2 11 15 3
L-SHADE SCSS-L-SHADE 5 19 5 13 12 4
ODF-SCSS- jSO 7 15 7 11 15 3
jSO SCSS-jSO 6 16 7 11 15 3

50-D 100-D
ODF-SCSS-

L-SHADE
L-SHADE 13 13 3 18 8 3
SCSS-L-SHADE 9 17 3 12 14 3

ODF-SCSS- jSO 15 13 1 25 4 0
jSO SCSS-jSO 14 11 4 16 12 1

Table 21
Overall performance comparisons of ODF with state-of-the-art DEs according to
Holm, Hochberg and Hommel procedures.

ODF-SCSS-L-SHADE vs. unadjusted p pHolm pHochberg pHommel

L-SHADE 0.000008 0.000023 0.000023 0.000023
SCSS-L-SHADE 0.009498 0.018996 0.018996 0.018996
ODF-SCSS- jSO

vs.
unadjusted p pHolm pHochberg pHommel

jSO <1E-6 <1E-6 <1E-6 <1E-6
SCSS-jSO 0.01977 0.01977 0.01977 0.01977

Table 22
Comparison results of ODF-SCSS-jSO with other state-of-the-art DEs.

vs. win tie lose win tie lose
10-D 30-D

PaDE 12 10 7 13 8 8
L-SHADE-SP 8 12 9 12 17 0
EBL-SHADE 8 13 8 13 13 3
EaDE 7 12 10 11 16 2

50-D 100-D
PaDE 19 6 4 24 2 3
L-SHADE-SP 13 15 1 24 5 0
EBL-SHADE 20 6 3 23 5 1
EaDE 15 12 2 24 5 0

Table 23
Overall performance comparisons of ODF-SCSS-jSO with other state-of-the-art
DEs according to Holm, Hochberg and Hommel procedures.

unadjusted p pHolm pHochberg pHommel

PaDE <1E-6 <1E-6 <1E-6 <1E-6
L-SHADE-SP 7.1E-4 7.1E-4 7.1E-4 7.1E-4
EBL-SHADE <1E-6 <1E-6 <1E-6 <1E-6
EaDE 1.9E-3 1.9E-3 1.9E-3 1.9E-3

S.X. Zhang et al.

Swarm and Evolutionary Computation 80 (2023) 101322

18

baselines.
Parameters for these state-of-the-art DEs are from the corresponding

literature since the CEC2017 test suite was originally used. The best,
worst, median, mean and standard deviation values obtained by ODF-
SCSS-jSO are presented in Table S10 and the detailed results in the
format required by the CEC competition are provided as supplementary
data. From the comparison results in Tables S11 and 22, the ODF variant
performs better than the four compared DEs in the 30-, 50- and 100-D
cases and comparably in the 10-D case. It is also observed that the su-
periority becomes more significant as the dimensionality increases. The
reason lies in that ODF considers the dimensional level difference and
might be more suitable for handling many variables. From Table 23, the
ODF variant is statistically better in all the cases compared with all the
considered DEs.

(2) Flexibility on the CEC2022 test suite

The previous experiments employed the CEC2017 test suite as the
standard benchmark for verifying the performance of ODF. To further
examine the flexibility on a wider variety of functions, we consider the
CEC2022 test suite, which consists of twelve functions with the di-
mensionalities of 10 and 20, respectively. Following the requirement in
[67], the maximum number of function evaluations is set as 200,000 and
1000,000 for the 10-D and 20-D functions, respectively. For a compar-
ison, we consider the NL-SHADE-LBC (Non-linear population size
reduction success-history adaptive DE with linear bias change) [68]
algorithm, which is the best performing pure DE algorithm and the
second-best competitor in the CEC2022 competition.

Table S12 shows the best, worst, median, mean and standard devi-
ation values obtained by ODF-SCSS-jSO and the detailed results in the
format required by the CEC competition are provided as supplementary
data. The comparison results of ODF-SCSS-jSO with NL-SHADE-LBC are
collected in Table 24, from which NL-SHADE-LBC performs better on the
10-D functions with better and worse performance on 4 and 2 functions,
respectively. In the 20-D case, ODF-SCSS-jSO is better with the “win/
lose” metric of “3/1′′. Overall, it is seen that the advantage of ODF is
more significant in the high- dimensional case, which is in consistent

with the previous observation on the CEC2017 functions.

5. Conclusion

In this paper, an objective-dimension feedback (ODF) based method
has been proposed to fully utilize the objective and dimension space
knowledge for performance enhancement of DE. In ODF, diversity
ranking of each dimension and fitness ranking of individuals are
simultaneously used to assign the tasks of exploitation and exploration
(with the SEiLEr mechanism) and the amount of exploitation and
exploration capabilities (with the NDAC mechanism), respectively. In
response to the dimension difference, as suggested by SEiLEr, collective
dimensional learning (CDL) and single dimensional learning (SDL) are
cooperatively implemented in each solution to generate offspring.

Experiments have been conducted mainly on the 29 CEC2017
benchmark functions. The results show that with SEiLEr, performance
improvements on hybrid functions in which dimensions are with
different properties have been observed. And with OSK, exploitation and
exploration capabilities could be distributed among dimensions for
general performance enhancements. ODF method has also been
compared with several OSK-, SSK- and DSK-based multi-strategy utili-
zation schemes from literature. Studies also show that ODF exhibits
significantly superior performance.

With respect to the utilization of OSK in ODF, FR rather than SFR was
adopted. The reason is that credit assignments for strategies become
difficult when assigned at the dimension level. Further investigations for
possible solutions would be considered as future works. Another po-
tential research direction is to apply the proposed method to other kinds
of optimization, such as constrained and multi-objective optimization
problems [69].

CRediT authorship contribution statement

Sheng Xin Zhang: Conceptualization, Methodology, Software,
Writing – original draft, Funding acquisition. Shao Yong Zheng:
Writing – review & editing, Funding acquisition. Li Ming Zheng:
Writing – review & editing, Funding acquisition.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

The work described in this paper was supported by the National
Natural Science Foundation of China (No. 62201227; No. 61671485),
the Applied Science and Technology Research and Development Special
Fund Project of Guangdong Province (No. 2016B010126004), the Na-
tional Special Project Number for International Cooperation (No.
2015DFR11050) and the Guangzhou Basic and Applied Basic Research
(No. SL2022A04J01366).

Supplementary materials

Supplementary material associated with this article can be found, in
the online version, at doi:10.1016/j.swevo.2023.101322.

Table 24
Comparison results of ODF-SCSS-jSO with NL-SHADE-LBC on the CEC2022 test
suite.

NL-SHADE-LBC ODF-SCSS-jSO
mean std sig. mean std

10-D F1 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00
F2 1.33E-01 7.28E-01 - 7.27E+00 2.36E+00
F3 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00
F4 1.30E+00 7.91E-01 = 1.43E+00 1.13E+00
F5 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00
F6 1.24E-01 1.27E-01 - 2.76E-01 1.59E-01
F7 0.00E+00 0.00E+00 - 3.95E-01 3.06E-01
F8 4.60E-02 3.87E-02 - 1.48E+00 3.77E+00
F9 2.29E+02 8.67E-14 = 2.29E+02 0.00E+00
F10 1.00E+02 3.00E-02 + 1.00E+02 4.22E-02
F11 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00
F12 1.65E+02 4.11E-01 + 1.64E+02 1.12E+00
W/T/L 2/6/4

20-D F1 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00
F2 4.73E+01 8.97E+00 + 4.84E+01 1.59E+00
F3 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00
F4 4.45E+00 1.42E+00 = 4.34E+00 1.68E+00
F5 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00
F6 6.36E-01 5.69E-01 = 4.90E-01 1.38E-02
F7 2.58E+00 5.84E+00 - 4.51E+00 6.18E+00
F8 1.65E+01 6.43E+00 = 1.87E+01 3.67E+00
F9 1.81E+02 2.89E-14 = 1.81E+02 8.67E-14
F10 1.00E+02 2.33E-02 + 1.00E+02 1.61E-02
F11 3.03E+02 1.83E+01 = 3.00E+02 8.44E-14
F12 2.39E+02 4.20E+00 + 2.32E+02 8.97E-01
W/T/L 3/8/1

S.X. Zhang et al.

https://doi.org/10.1016/j.swevo.2023.101322

Swarm and Evolutionary Computation 80 (2023) 101322

19

References

[1] D.H. Wolpert, W.G. Macready, No free lunch theorems for optimization, IEEE
Trans. Evol. Comput. 1 (1997) 67–82.

[2] R. Storn, K. Price, Differential evolution-A simple and efficient heuristic for global
optimization over continuous spaces, J. Glob. Optim. 11 (1997) 341–359.

[3] K. Price, R. Storn, J. Lampinen, Differential Evolution: A Practical Approach to
Global Optimization, Springer-Verlag, Berlin, Germany, 2005.

[4] S. Das, P.N. Suganthan, Differential evolution: a survey of the state-of-the-art, IEEE
Trans. Evol. Comput. 15 (2011) 4–31.

[5] S. Das, S.S. Mullick, P.N. Suganthan, Recent advances in differential evolution—an
updated survey, Swarm Evol. Comput. 27 (2016) 1–30.

[6] S.X. Zhang, Y.N. Wen, Y.H. Liu, L.M. Zheng, S.Y. Zheng, Differential evolution with
domain transform, IEEE Trans. Evol. Comput. (2022), https://doi.org/10.1109/
TEVC.2022.3220424.

[7] S. Gao, Y. Yu, Y. Wang, J. Wang, J. Cheng, M. Zhou, Chaotic local search-based
differential evolution algorithms for optimization, IEEE Trans. Syst. Man Cybern.
Syst. 51 (2021) 3954–3967.

[8] J. Zhang, A.C. Sanderson, JADE: adaptive differential evolution with optional
external archive, IEEE Trans. Evol. Comput. 13 (2009) 945–958.

[9] A.K. Qin, V.L. Huang, P.N. Suganthan, Differential evolution algorithm with
strategy adaptation for global numerical optimization, IEEE Trans. Evol. Comput.
13 (2009) 398–417.

[10] W. Gong, Z. Cai, Differential evolution with ranking-based mutation operators,
IEEE Trans. Cybern. 43 (2013) 2066–2081.

[11] X. Zhang, S.Y. Yuen, A directional mutation operator for differential evolution
algorithms, Appl. Soft Comput. 30 (2015) 529–548.

[12] L.M. Zheng, S.X. Zhang, K.S. Tang, S.Y. Zheng, Differential evolution powered by
collective information, Inf. Sci. 399 (2017) 13–29.

[13] L.M. Zheng, et al., Enhancing differential evolution with interactive information,
Soft Comput. 22 (2018) 7919–7938.

[14] G. Wu, R. Mallipeddi, P.N. Suganthan, Ensemble strategies for population-based
optimization algorithms—a survey, Swarm Evol. Comput. 44 (2019) 695–711.

[15] J. Brest, S. Greiner, B. Boskovic, M. Mernik, V. Zumer, Self-adapting control
parameters in differential evolution: a comparative study on numerical benchmark
problems, IEEE Trans. Evol. Comput. 10 (2006) 646–657.

[16] R. Tanabe, A. Fukunaga, Success-history based parameter adaptation for
differential evolution, in: Proceedings of the IEEE Congress on Evolutionary
Computation, Cancun, Mexico, 2013, pp. 71–78. Jun.

[17] R. Tanabe, A.S. Fukunaga, Improving the search performance of SHADE using
linear population size reduction, in: Proceedings of the IEEE Congress on
Evolutionary Computation, Beijing, China, 2014, pp. 1658–1665.

[18] R.A. Sarker, S.M. Elsayed, T. Ray, Differential evolution with dynamic parameters
selection for optimization problems, IEEE Trans. Evol. Comput. 18 (2014)
689–707.

[19] W.-.J. Yu, et al., Differential evolution with two-level parameter adaptation, IEEE
Trans. Cybern. 44 (2014) 1080–1099.

[20] L. Tang, Y. Dong, J. Liu, Differential evolution with an individual-dependent
mechanism, IEEE Trans. Evol. Comput. 19 (2015) 560–574.

[21] N.H. Awad, M.Z. Ali, P.N. Suganthan, Ensemble sinusoidal differential covariance
matrix adaptation with Euclidean neighborhood for solving CEC2017 benchmark
problems, in: Proceedings of the IEEE Congress on Evolutionary Computation,
2017, pp. 372–379. Jun.

[22] Z. Meng, J.-.S. Pan, K.-.K. Tseng, PaDE: an enhanced differential evolution
algorithm with novel control parameter adaptation schemes for numerical
optimization, Knowl. Based Syst. 168 (2019) 80–99.

[23] R. Tanabe, A. Fukunaga, Reviewing and benchmarking parameter control methods
in differential evolution, IEEE Trans. Cybern. 50 (2020) 1170–1184.

[24] X.-G. Zhou, C.-X. Peng, J. Liu, Y. Zhang, G.-J. Zhang, Underestimation-assisted
global-local cooperative differential evolution and the application to protein
structure prediction, IEEE Trans. Evol. Comput. 24 (2020) 536–550.

[25] Z. Meng, Y. Zhong, C. Yang, CS-DE: cooperative strategy based differential
evolution with population diversity enhancement, Inf. Sci. 577 (2021) 663–696.

[26] J. Brest, M.S. Maučec, B. Bošković, Single objective real-parameter optimization:
algorithm jSO, in: Proceedings of the IEEE Congress on Evolutionary Computation,
San Sebastian, 2017, pp. 1311–1318.

[27] V. Stanovov, S. Akhmedova, E. Semenkin, LSHADE algorithm with rank-based
selective pressure strategy for solving CEC 2017 benchmark problems, in:
Proceedings of the IEEE Congress on Evolutionary Computation, Rio de Janeiro,
2018, pp. 1–8.

[28] Z. Meng, C. Yang, Hip-DE: historical population based mutation strategy in
differential evolution with parameter adaptive mechanism, Inf. Sci. 562 (2021)
44–77.

[29] X. Wang, C. Li, J. Zhu, Q. Meng, L-SHADE-E: ensemble of two differential evolution
algorithms originating from L-SHADE, Inf. Sci. 552 (2021) 201–219.

[30] Y. Yu, Z. Lei, Y. Wang, T. Zhang, C. Peng, S. Gao, Improving dendritic neuron
model with dynamic scale-free network-based differential evolution, IEEE/CAA J.
Autom. Sin. 9 (2022) 99–110. Jan.

[31] S. Rahnamayan, H.R. Tizhoosh, M. MA Salama, Opposition-based differential
evolution, IEEE Trans. Evol. Comput. 12 (2008) 64–79.

[32] B.-.Y. Qu, P.N. Suganthan, J.-.J. Liang, Differential evolution with neighborhood
mutation for multimodal optimization, IEEE Trans. Evol. Comput. 16 (2012)
601–614.

[33] S.-.M. Guo, C.-.C. Yang, Enhancing differential evolution utilizing eigenvector-
based crossover operator, IEEE Trans. Evol. Comput. 19 (2015) 31–49.

[34] M. Yang, et al., Differential evolution with auto-enhanced population diversity,
IEEE Trans. Cybern. 45 (2015) 302–315.

[35] N.H. Awad, M.Z. Ali, J.J. Liang, B.Y. Qu, P.N. Suganthan, Problem definitions and
evaluation criteria for the CEC 2017 special session and competition on single
objective real-parameter numerical optimization, Nanyang Technol. Univ.,
Singapore, Nov, 2016.

[36] S. Das, et al., Differential evolution using a neighborhood-based mutation operator,
IEEE Trans. Evol. Comput. 13 (2009) 526–553.

[37] Y. Wang, Z. Cai, Q. Zhang, Differential evolution with composite trial vector
generation strategies and control parameters, IEEE Trans. Evol. Comput. 15 (2011)
55–66.

[38] W. Gong, Z. Cai, C.X. Ling, H. Li, Enhanced differential evolution with adaptive
strategies for numerical optimization, IEEE Trans. Syst. Man Cybern. Cybern. 41
(2011) 397–413.

[39] W. Gong, Á. Fialho, Z. Cai, H. Li, Adaptive strategy selection in differential
evolution for numerical optimization: an empirical study, Inf. Sci. 181 (2011)
5364–5386.

[40] K. Li, Á. Fialho, S. Kwong, Q. Zhang, Adaptive operator selection with bandits for a
multiobjective evolutionary algorithm based on decomposition, IEEE Trans. Evol.
Comput. 18 (2013) 114–130.

[41] G. Wu, R. Mallipeddi, P.N. Suganthan, et al., Differential evolution with multi-
population based ensemble of mutation strategies, Inf. Sci. 329 (2016) 329–345.

[42] S.M. Elsayed, R.A. Sarker, D.L. Essam, An improved self-adaptive differential
evolution algorithm for optimization problems, IEEE Trans. Ind. Inform. 9 (2013)
89–99.

[43] R. Mallipeddi, P. Suganthan, Q. Pan, M. Tasgetiren, Differential evolution
algorithm with ensemble of parameters and mutation strategies, Appl. Soft
Comput. 11 (2011) 1679–1696.

[44] Q. Fan, X. Yan, Self-adaptive differential evolution algorithm with zoning
evolution of control parameters and adaptive mutation strategies, IEEE Trans.
Cybern. 46 (2016) 219–232.

[45] S.-M. Guo, C.-C. Yang, P.-H. Hsu, J.S.-H. Tsai, Improving differential evolution with
successful-parent-selecting framework, IEEE Trans. Evol. Comput. 19 (2015)
717–730.

[46] W. Du, et al., Differential evolution with event-triggered impulsive control, IEEE
Trans. Cybern. 47 (2017) 244–257.

[47] S.X. Zhang, S.Y. Zheng, L.M. Zheng, An efficient multiple variants coordination
framework for differential evolution, IEEE Trans. Cybern. 47 (2017) 2780–2793.

[48] Z.-.Z. Liu, et al., An adaptive framework to tune the coordinate systems in nature-
inspired optimization algorithms, IEEE Trans. Cybern. 49 (2018) 1403–1416.

[49] M. Tian, X. Gao, C. Dai, Differential evolution with improved individual-based
parameter setting and selection strategy, Appl. Soft Comput. 56 (2017) 286–297.

[50] X.-.F. Liu, et al., Historical and heuristic-based adaptive differential evolution, IEEE
Trans. Syst. Man Cybern. Syst. 49 (2018) 2623–2635.

[51] S.X. Zhang, L.M. Zheng, K.S. Tang, S.Y. Zheng, W.S. Chan, Multi-layer competitive-
cooperative framework for performance enhancement of differential evolution, Inf.
Sci. 482 (2019) 86–104.

[52] L.M. Zheng, S.X. Zhang, S.Y. Zheng, Y.M. Pan, Differential evolution algorithm
with two-step subpopulation strategy and its application in microwave circuit
designs, IEEE Trans. Ind. Inform. 12 (2016) 911–923.

[53] M. Tian, X. Gao, Differential evolution with neighborhood-based adaptive
evolution mechanism for numerical optimization, Inf. Sci. 478 (2019) 422–448.

[54] G. Sun, et al., Differential evolution with individual-dependent topology
adaptation, Inf. Sci. 450 (2018) 1–38.

[55] W. Gong, A. Zhou, Z. Cai, A multi-operator search strategy based on cheap
surrogate models for evolutionary optimization, IEEE Trans. Evol. Comput. 19
(2015) 746–758.

[56] L. Cui, G. Li, Q. Lin, J. Chen, N. Lu, Adaptive differential evolution algorithm with
novel mutation strategies in multiple sub-populations, Comput. Oper. Res. 67
(2016) 155–173.

[57] X. Zhou, G. Zhang, Differential evolution with underestimation-based
multimutation strategy, IEEE Trans. Cybern. 49 (2018) 1353–1364.

[58] X. Zhou, G. Zhang, Abstract convex underestimation assisted multistage
differential evolution, IEEE Trans. Cybern. 47 (2017) 2730–2741.

[59] S. Elsayed, R. Sarker, C.A. Coello Coello, Fuzzy rule-based design of evolutionary
algorithm for optimization, IEEE Trans. Cybern. 49 (2019) 301–314.

[60] S.X. Zhang, W.S. Chan, Z.K. Peng, S.Y. Zheng, K.S. Tang, Selective-candidate
framework with similarity selection rule for evolutionary optimization, Swarm
Evol. Comput. 56 (2020), 100696.

[61] D.J. Sheskin. Handbook of Parametric and Nonparametric Statistical Procedure,
5th Ed., CRC Press, Boca Raton, FL, 2011.

[62] J. Derrac, S. Garcia, D. Molina, F. Herrera, A practical tutorial on the use of
nonparametric statistical tests as a methodology for comparing evolutionary and
swarm intelligence algorithms, Swarm Evol. Comput. 1 (2011) 3–18.

[63] S. Das, P.N. Suganthan, Problem Definitions and Evaluation Criteria For CEC 2011
Competition On Testing Evolutionary Algorithms On Real World Optimization
Problems, Jadavpur University, Nanyang Technological University, 2010.
Technical Report.

[64] V. Stanovov, A. Shakhnaz, S. Eugene, Selective pressure strategy in differential
evolution: exploitation improvement in solving global optimization problems,
Swarm Evol. Comput. 50 (2019), 100463.

[65] A.W. Mohamed, A.A. Hadi, K.M. Jambi, Novel mutation strategy for enhancing
SHADE and LSHADE algorithms for global numerical optimization, Swarm Evol.
Comput. 50 (2019), 100455.

S.X. Zhang et al.

http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0001
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0001
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0002
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0002
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0003
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0003
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0004
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0004
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0005
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0005
https://doi.org/10.1109/TEVC.2022.3220424
https://doi.org/10.1109/TEVC.2022.3220424
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0007
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0007
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0007
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0008
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0008
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0009
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0009
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0009
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0010
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0010
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0011
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0011
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0012
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0012
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0013
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0013
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0014
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0014
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0015
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0015
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0015
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0016
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0016
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0016
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0017
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0017
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0017
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0018
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0018
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0018
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0019
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0019
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0020
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0020
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0021
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0021
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0021
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0021
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0022
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0022
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0022
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0023
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0023
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0024
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0024
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0024
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0025
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0025
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0026
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0026
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0026
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0027
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0027
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0027
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0027
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0028
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0028
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0028
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0029
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0029
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0030
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0030
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0030
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0031
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0031
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0032
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0032
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0032
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0033
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0033
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0034
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0034
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0036
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0036
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0037
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0037
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0037
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0038
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0038
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0038
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0039
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0039
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0039
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0040
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0040
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0040
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0041
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0041
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0042
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0042
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0042
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0043
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0043
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0043
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0044
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0044
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0044
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0045
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0045
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0045
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0046
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0046
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0047
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0047
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0048
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0048
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0049
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0049
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0050
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0050
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0051
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0051
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0051
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0052
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0052
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0052
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0053
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0053
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0054
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0054
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0055
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0055
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0055
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0056
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0056
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0056
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0057
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0057
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0058
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0058
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0059
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0059
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0060
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0060
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0060
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0061
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0061
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0062
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0062
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0062
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0063
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0063
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0063
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0063
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0064
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0064
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0064
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0065
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0065
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0065

Swarm and Evolutionary Computation 80 (2023) 101322

20

[66] S.X. Zhang, W.S. Chan, K.S. Tang, S.Y. Zheng, Adaptive strategy in differential
evolution via explicit exploitation and exploration controls, Appl. Soft Comput.
107 (2021), 107494.

[67] A. Kumar, K.V. Price, A.W. Mohamed, A.A. Hadi, P.N. Suganthan, Problem
Definitions and Evaluation Criteria For the CEC 2022 Special Session and
Competition On Single Objective Bound Constrained Numerical Optimization,
Nanyang Technol. Univ., Singapore, 2022. Tech. Rep.

[68] V. Stanovov, S. Akhmedova, E. Semenkin, NL-SHADE-LBC algorithm with linear
parameter adaptation bias change for CEC 2022 numerical optimization, in:
Proceedings of the IEEE Congress on Evolutionary Computation, Padua, Italy,
2022, pp. 01–08.

[69] J.D. Ser, et al., Bio-inspired computation: where we stand and what’s next, Swarm
Evol. Comput. 48 (2019) 220–250.

S.X. Zhang et al.

http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0066
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0066
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0066
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0067
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0067
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0067
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0067
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0068
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0068
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0068
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0068
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0069
http://refhub.elsevier.com/S2210-6502(23)00095-0/sbref0069

	Differential evolution with objective and dimension knowledge utilization
	1 Introduction
	2 Literature review
	2.1 DE
	2.2 Multi-strategy DE with utilization of OSK
	2.3 Multi-strategy DE with utilization of SSK or DSK
	2.4 Multi-strategy DE with utilization of OSK and SSK

	3 Proposed method
	3.1 Motivation
	3.2 Utilization of DSK in ODF: SEiLEr mechanism
	3.3 Utilization of OSK in ODF: NDAC mechanism
	3.4 Collective and single dimensional strategies
	3.5 Time complexity of the proposed mechanisms

	4 Experimental results
	4.1 Comparison with single SDL and CDL utilization
	4.2 Comparison with single OSK and DSK utilization
	4.3 Effectiveness of SEiLEr
	4.4 Comparison with OSK-based multi-strategy DEs
	4.5 Comparison with DSK-based multi-strategy DEs
	4.6 Comparison with OSK and SSK-based multi-strategy DEs
	4.7 Comparison with state-of-the-art multi-strategy utilization schemes
	4.8 Application in real-world problems
	4.9 Time complexity of the multi-strategy utilization schemes
	4.10 Flexibility of the ODF method

	5 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	Supplementary materials
	References

