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A B S T R A C T

Achieving better exploitation and exploration capabilities (EEC) have always been an important yet challenging
issue in the design of evolutionary optimization algorithm (EOA). The difficulties lie in obtaining a good balance
in EEC, which is determined cooperatively by operations and parameters in an EOA. When deficiencies in
exploitation or exploration are observed, most existing works consider a piecemeal approach, either by designing
new operations or by altering the parameters. Unfortunately, when different situations are encountered, these
proposals may fail to be the winner. To address these problems, this paper proposes an explicit EEC control
method named selective-candidate framework with similarity selection rule (SCSS). M (M > 1) candidates are first
generated from each current solution with independent operations and parameters to enrich the search. Then, a
similarity selection rule is designed to determine the final candidate by considering the fitness ranking of the
current solution and its Euclidian distance to each of these M candidates. Superior current solutions will prefer the
closest candidates for efficient local exploitation while inferior ones will favor the farthest for exploration pur-
pose. In this way, the rule could synthesize exploitation and exploration, making the evolution more effective.
When applied to three classic, four state-of-the-art and four up-to-date EOAs from branches of differential evo-
lution, evolution strategy and particle swarm optimization, significant enhancement in performance is achieved.
1. Introduction

Constructed on a population basis, evolutionary optimization algo-
rithm (EOA) explores a searching space by iteratively performing genetic
operations (for evolutionary algorithms, EAs [1,2]) or social learning
processes (for swarm intelligences, SIs [3]) to generate new solutions.
How these solutions are sampled, gives the feature of a particular method
and determines its exploitation and exploration capabilities (EEC). For
differential evolution (DE) [4–8] and evolution strategy (ES) [9], the
genetic operations are mutation and crossover/recombination. While for
particle swarm optimization (PSO) [10], the social learning procedures
consist of the velocity and position update equations. Commonly, EEC of
EOAs is indispensably controlled by the genetic operations/social
learning, together with the associated parameters (e.g. mutation and
crossover factors in DE, normal distribution in ES and acceleration co-
efficients in PSO), which cooperatively locate the sampled solutions.
Since EEC is the cornerstone of evolutionary optimization [11] and has a
direct impact on performance, researchers have put a lot of effort on
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designing appropriate exploitation and exploration schemes [12]. Exist-
ing works can be summarized under the following three categories.

(1) EEC controlled by genetic operations/social learning. In
general, genetic operations/social learning determines the evo-
lution direction. In this category, research works solely focus on
genetic operations/social learning. Along this line, various types
of operators, such as ranking-based [13], collective
information-based [14] mutation, multi-objective sorting-based
[15] and jumping genes-based crossover [16] were designed, fa-
voring an exploitation or exploration trend. Fitness diversity was
considered in the designs of operations [13–15]. Besides these
newly designed operations, EEC were also controlled by an
ensemble of multiple DE mutation strategies [17–20], a combi-
nation of different types of optimizers [21], and the memetic al-
gorithms [22–24]. In the multialgorithm genetically adaptive
method (AMALGAM) [21] and multiple offspring sampling (MOS)
[23] hybrid method, the constituents compete for computational
u.edu.cn (S.Y. Zheng).
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Fig. 1. Comparison results of three SCSS-based classic algorithms with the baselines on CEC2014 test functions: (a) 30-D, (b) 50-D. Scheme 1 with GD ¼ 1 and M ¼ 2
for all the three SCSS variants.

Fig. 2. Comparison results of four SCSS-based advanced algorithms with the baselines on CEC2014 test functions: (a) 30-D, (b) 50-D. Scheme 2 is utilized in SCSS-
JADE, SCSS-SHADE and SCSS-LIPS, while Scheme 1 with GD ¼ 0 is applied for SCSS-CMA-ES. The reproduction times M is set to 2 for SCSS-JADE and SCSS-SHADE, 4
for SCSS-LIPS and 5 for SCSS-CMA-ES.

Fig. 3. P–N values of SCSS variants with different SS rules against the baselines on 30-D CEC2014 test functions. (P–N value ¼ the number of functions that SCSS
variant outperforms the baseline – the number of functions that SCSS variant loses to the baseline).
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Fig. 4. TD against the rank on 30-D CEC2014 functions F5 and F13. (The similar phenomena can be observed on all the CEC functions).

Fig. 5. Comparison of average prediction accuracy between SS and CSM on thirty 30-D CEC2014 functions.

Table 1
Comparison results of SCSS-JADE with three variants on 30-D
CEC2014 test functions.

– / ¼ /þ
Variant-oppo vs. SCSS-JADE 24/5/1
Variant-Meval vs. SCSS-JADE 16/14/0
Variant-CSM vs. SCSS-JADE 18/11/1
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resources based on their online performance, which enhanced the
exploitation capability of the unity. To preserve population di-
versity, [21] also introduced a diversity mechanism. In Ref. [24,
3

25], multiple search agents were coordinated by considering
fitness distribution among individuals.

(2) EEC controlled by parameter tuning. Parameters control the
evolution scale. In this category, researchers pursued efficient
parameter tuning schemes, that included deterministic and
adaptive ones. Population size is a common parameter in evolu-
tionary optimization. In Ref. [26], population size was adaptively
controlled by measuring fitness diversity. Apart from population
size, extra parameters introduced into a specific algorithm may
also need fine-tuning, such as the mutation and crossover factors
[27] of DE. In Ref. [28,29], fitness diversity was used in parameter
controls.



Fig. 6. P–N values of SCSS variants with different M settings against the baselines. (P–N value ¼ the number of functions that SCSS variant outperforms the baseline –

the number of functions that SCSS variant loses to the baseline).
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(3) EEC controlled by the combination of genetic operations/
social learning and parameter tuning. There are also some
works [30,31] aimed at simultaneously controlling genetic oper-
ations/social learning and parameters. In Ref. [30], Mallipeddi
et al. proposed to improve DE with an ensemble of parameters and
mutation strategies. In Ref. [31], Wang et al. proposed to use three
different mutation strategies combined with three different pairs
of control parameters to generate solutions for selecting the fittest.
These methods struck a balance between exploitation and explo-
ration using two steps. The first step maintained a mutation
strategy pool with diverse searching characteristics while the
second step emphasized exploitation by fitness-based reward [30]
or greedy pre-selection [31]. However, there were some issues
that may hinder the performance. On the one hand, both methods
were greedy and there was no explicit mechanism to remedy
premature convergence. While on the other hand, multiple can-
didates were evaluated for each current solution [31], resulting in
a higher total evaluation cost.

With regards to the saving of function evaluations, in the computa-
tionally expensive scenario, surrogate models, such as Kriging [32] and
support vector machines (SVM) [33] were usually adopted to predict the
fitness of multiple samples and select the best approximation. In
Ref. [20], a cheap surrogate model was proposed to filter the densest
solution from multiple samples, which were generated by multiple op-
erators. However, due to the greedy nature, these methods may
encounter difficulties when solving problems that require high popula-
tion diversity.

In this paper, we propose a selective-candidate framework with
similarity selection rule (SCSS), which simultaneously considers the op-
erations (i.e. evolution direction) and parameters (i.e. evolution scale)
that affect the generation of candidates while addressing the issues in
category (3) and surrogate-based methods. The features, motivations and
contributions of SCSS are summarized as follows.
4

1) SCSS first generatesM (M> 1) candidates for each current solution by
M independent reproduction procedures. Afterwards, one of them
will become the final candidate for each current solution based on a
selective rule. The big challenge here is that it should be effective and
efficient. On the one hand, it is required to provide a potentially
excellent candidate with balanced EEC for the next generation, while
on the other hand, it should not involve objective function evaluation
which requires additional cost. To resolve these issues, a similarity
selection (SS) rule based on fitness ranking and Euclidian distance
information is designed to strike a balanced EEC while avoiding
evaluation of all the candidates.

2) SCSS also considers the fitness ranking of the population, which
provides relative location information of individuals. For superior
current solutions, the closest candidate measured by Euclidian dis-
tance in solution space will be selected as the final candidate for local
search (exploitation) purpose. While for inferior ones, the farthest
candidate is favored for basin-jumping (exploration) purpose.

3) Based on the above design, the proposed SCSS framework is expected
to meet the challenge in 1) and enhance the performance. The main
contributions of this work are summarized as follows.
a) Different algorithms may be suitable for solving different optimi-

zation problems [34–36]. This study provides a generic method
that is readily applied to different types of EOAs.

b) The proposed method provides an explicit EEC control paradigm
based on fitness and Euclidian distance measures, which is
straight-forward, simple and easy-understanding.

c) Extensive study shows that the proposed method achieves a
balanced EEC and consequently demonstrates remarkable perfor-
mance enhancement of several start-of-the-art and top algorithms
available in the literature [37–45]. In addition, its working
mechanism, benefits and real-world applications are also pre-
sented and analyzed.

The rest of this paper is organized as follows. Section 2 describes the



Fig. 7. P–N values between SCSS variants (A vs. B) with adjacent M settings (P–N value ¼ the number of functions that B outperforms A – the number of functions that
B loses to A).

Fig. 8. Comparison results of four SCSS-based top algorithms with the baselines on CEC2014 test functions: (a) 30-D, (b) 50-D.
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Fig. 9. Convergence plot of SCSS-L-SHADE versus L-SHADE on six selected 50-D CEC2014 functions in the median run. (Note: On F6, SCSS-L-SHADE reaches the
global optimal at generation 750).
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Table 2
Comparison results of SCSS variants with the baselines on CEC2017 test suit.

– / ¼ /þ 30-D 50-D

JADE vs. SCSS-JADE 19/11/0 18/10/2
SHADE vs. SCSS-SHADE 7/23/0 11/19/0
CMA-ES vs. SCSS-CMA-ES 18/11/1 16/14/0
LIPS vs. SCSS-LIPS 28/1/1 28/1/1
L-SHADE vs. SCSS- L-SHADE 9/18/3 15/15/0
UMOEA-II vs. SCSS-UMOEA-II 3/24/3 14/14/2
L-SHADE_EpSin vs. SCSS-L-SHADE_EpSin 7/21/2 13/17/0
jSO vs. SCSS-jSO 7/23/0 12/18/0
Total 225/240/15

Fig. 10. Comparison results of four SCSS-based top algorithms with the base-
lines on 100-D CEC2017 test functions.

Table 3
Comparison results of the top SCSS variants with the baselines on 30-D, 50-D and
100-D CEC2017 benchmark set according to multi-problem Wilcoxon’s test.

Rþ R– p-value α ¼
0.05

SCSS-L-SHADE vs. L-SHADE 3235.0 770.0 0.0Eþ00 Yes
SCSS-UMOEA-II vs. UMOEA-II 3052.5 952.5 1.7E-05 Yes
SCSS-L-SHADE_EpSin vs. L-
SHADE_EpSin

3077.0 1018.0 3.4E-05 Yes

SCSS-jSO vs. jSO 3710.5 384.5 0.0Eþ00 Yes

Table 4
Overall performance ranking of the considered algorithms
on 30-D, 50-D and 100-D CEC2017 benchmark set by
Friedman’s test.

Algorithm Ranking

SCSS-jSO 2.76
SCSS-L-SHADE_EpSin 3.60
jSO 3.88
L-SHADE_EpSin 4.33
SCSS-L-SHADE 4.57
SCSS-UMOEA-II 5.19
L-SHADE 5.67
UMOEA-II 5.96
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proposed framework. Section 3 presents the experimental study and
relevant discussions, while section 4 concludes this paper.
7

2. Proposed method

2.1. Motivations

Generally, the procedures1 for EAs/SIs can be summarized as Algo-
rithm 1. It is common that one candidate is generated from a current
solution based on the reproduction procedure. However, due to the
stochastic process in operations and randomness in parameters, it cannot
be guaranteed that the candidate obtained is located within promising
search areas. If the reproduction procedure repeats, candidates from the
same current solution are likely to be different, bringing up various
building blocks, resulting in different searching performance. This is not
only observed in classic EAs and SIs, but also in many of their variants. To
alleviate the possible adverse effect from randomness and to improve the
performance, we propose a generic selective-candidate framework with
similarity selection rule (SCSS). To locate different search regions, SCSS
first generates M (M > 1) candidates with M independent reproduction
procedures. To save the function evaluation cost while maintaining good
exploitation and exploration trade-off, a similarity selection (SS) rule
based on similarity in both fitness and decision spaces is then proposed to
determine one final candidate.

Algorithm 1
General Procedures of EAs and SIs.

1: Initialize population X¼ {x1, x2, …, xNP};
2: While the stopping criteria are not met Do
3: Determine the control parameters CP for genetic operations/social learning;
4: Produce a new population Y via genetic operations/social learning on X;
5: Evaluate the fitness of Y;
6: Select solutions as new X from X[Y to enter next iteration.
7: End While
2.2. SCSS framework

The pseudo-code of the proposed SCSS framework is presented in
Algorithm 2, which consists of two components, i.e. multiple candidates
generation and similarity selection (SS) rule.

2.2.1. Multiple candidates generation
As seen from Algorithm 2, the SCSS framework performs M inde-

pendent reproductions with M sets of independent parameters (i.e. evo-
lution scale) and operations (i.e. evolution direction) (lines 5–7). Thus,
for each current solution xi, it owns a pool of candidate yim {m ¼ 1, 2,…,
M}. One solution yi is then selected from the correspondingM candidates
for each xi by SS rule (lines 14 and 18), as a result, the actual parameters
in use are recorded (lines 15 and 19).

Algorithm 2
SCSS Framework.

1: Initialize population X¼ {x1, x2, …, xNP};
2: While the stopping criteria are not met Do
3: Determine the fitness ranking rank(i) of each individual i{i¼ 1, 2, …, NP};//fitness
ranking for SS rule

————— Multiple Candidates Generation —————
4: For i¼ 1: NP
5: For m¼ 1: M
6: Determine the control parameters CPm¼ {cp1m, cp2m,…, cpNPm } for genetic
operations/social learning, following the original design of the baseline;

7: Produce new solution yim via genetic operations/social learning on xi;
8: Calculate distim¼ Euclidian distance (yim, xi); // similarity calculation for SS rule

(continued on next page)
1 For brevity, a review of three typical algorithms, DE, ES and PSO is pre-
sented in the supplementary file.
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Algorithm 2 (continued )

9: End For
10: End For
————— Similarity Selection Rule —————
11: For i¼ 1: NP
12: If randi(0,1)> rank(i)/NP
13: index¼ argmin

m2f1;2;:::;Mg
ðdistmi Þ;

14: yi¼ yiindex;
15: cpi¼ cpiindex;
16: Else
17: index¼ argmax

m2f1;2;:::;Mg
ðdistmi Þ;

18: yi¼ yiindex;
19: cpi¼ cpiindex;
20: End If
21: End For
——————————————————————————————————————
22: Evaluate the fitness of Y;
23: Select solutions as new X from X[Y to enter next iteration.
24: End While

2.2.2. Similarity selection rule
Apparently, the major challenge in the SCSS framework is how to

determine the final competitor from M candidates. On one hand, the
selective rule should be effective to bring in performance enhancement,
while on the other hand, it should be efficient to reduce the computa-
tional load.

Hence, we propose a similarity selection (SS) rule, as given in Algo-
rithm 2 (lines 11–21). The rule simultaneously considers the fitness
ranking information rank(i) of current solution xi and its Euclidian dis-
tance distim to each of the M candidates yim, which is defined as

distmi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XD
j¼1

�
ymi;j � xi;j

�2
vuut

where D is the number of decision variables.
By adjusting SS, the amount of exploitation and exploration can be

directly controlled. For instance, favoring candidates closest to the cur-
rent solutions are exploitative while preferring the ones farthest to the
current solutions could encourage exploration.

However, it should be remarked that the appropriate choice of SS for
a specific algorithm is dependent on the EEC of the given algorithm. For
illustration purposes, assume that the EEC is represented by a searching
radius (SRAD). A larger SRAD implies a more explorative characteristic,
and vice versa.

For a very explorative optimizer (named Optimizer 1), the large SRAD
facilitates a more random-like search with little risk suffered from local
optima. However, this large SRAD would make the current individuals
hard to refine. The reason is that the size of search space increases
exponentially with the number of dimensions, thus, the current in-
dividuals, as preserved by evolutionary algorithms, are relatively scarce.
Over-large SRAD is likely to visit huge useless areas and break up useful
Table 5
Performance comparisons (mean (std)) of SCSS-L-SHADE with L-SHADE on 22 CEC2

L-SHADE SCSS-L-SHADE

cec11P1 0.73 (2.73) – 0.34 (1.86)
cec11P2 �27.68 (0.38) ¼ �27.79 (0.54)
cec11P3 0.00 (0.00) ¼ 0.00 (0.00)
cec11P4 18.98 (3.09) ¼ 17.69 (3.34)
cec11P5 �36.84 (0.02) – ¡36.82 (0.16)
cec11P6 �29.16555 (0.00) – ¡29.16598 (0.00)
cec11P7 1.16 (0.07) – 1.11 (0.09)
cec11P8 220.00 (0.00) ¼ 220.00 (0.00)
cec11P9 369.60 (125.46) – 292.23 (104.70)
cec11P10 �21.60 (0.11) ¼ �21.62 (0.08)
cec11P11 48154.11(369.11) – 47274.03 (410.89)
– / ¼ /þ
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genetic materials.
For a very exploitative optimizer (named Optimizer 2), the small

SRAD would make the solutions focus more on local searches and are
unlikely to explore new materials. It is difficult for them to move from
one basin to another, which is important when addressing complicated
multi-modal problems.

For a balanced optimizer (named Optimizer 3) with an appropriate
SRAD, the SRAD could vary among individuals for a better design. For
example, when considering the fitness, with superior solutions in
promising areas, a smaller and appropriate SRAD may lead to better
exploitation. While inferior solutions are likely to be located near the
peaks. A larger and appropriate SRAD could force them to explore nearby
basins.

The above explanation is based on the premise that a smaller SRAD
has more chances of providing better solutions while a larger SRAD has
relatively fewer chances but higher population diversity, which is
confirmed by our experiments (see Section 3.3.3 and Fig. 5).

Regarding different cases: 1) for Optimizer 1, the SRAD should be
reduced to concentrate the search; 2) for Optimizer 2, the SRAD should
be enlarged to encourage exploration to new searching areas; and 3) for
Optimizer 3, different searching tasks should be assigned to solutions
with different potentials. On the one hand, new best solutions are likely
to be located in the area near the top-ranked solutions in the context of a
continuous landscape. To achieve a better efficiency in exploitation,
closest candidates of superior solutions are considered, targeting steady
improvements for promising areas. On the other hand, farthest candi-
dates of inferior solutions are preferred, aiming for better exploration.

In view of the above, two SS schemes are proposed as follows:
Scheme 1: If rank(i)� ceil(NP�GD)

Select the closest candidate from yim {m¼ 1, 2, …, M} for
individual xi ;

Else
Select the farthest candidate from yim {m¼ 1, 2,…,M} for

individual xi ;
End If

Scheme 2: If randi(0,1)> rank(i)/NP
Select the closest candidate from yim {m¼ 1, 2, …, M} for

individual xi ;
Else

Select the farthest candidate from yim {m¼ 1, 2,…,M} for
individual xi ;

End If
where rank(i) 2 f1; 2; :::;NPg is the fitness ranking of individual xi

and rank(i) ¼ 1 is the best. ceil (.) is a ceiling function. randi(0,1) is a
uniformly distributed random number within (0,1) for individual xi {i ¼
1, 2, …,NP}.

In Scheme 1, the proportion of top individuals preferring the closest
candidates is controlled by a greedy degree parameter GD in the range
[0,1]. Specifically, the superiorGD� 100% selects the nearest candidates
while the inferior (1 � GD) � 100% portion selects the farthest candi-
dates. The larger the GD value is, the more exploitative Scheme 1
011 real-world problems.

L-SHADE SCSS-L-SHADE

cec11P12 1050159.77 (1254.39) – 1047950.07 (1191.33)
cec11P13 15444.51 (1.56) ¼ 15444.19 (0.00)
cec11P14 18093.89 (33.47) ¼ 18093.73 (33.53)
cec11P15 32740.43 (0.21) ¼ 32740.41 (0.18)
cec11P16 123355.03 (580.33) – 123000.40 (381.84)
cec11P17 1735648.35 (7377.90) – 1729536.58 (5961.35)
cec11P18 925951.66 (758.39) – 925373.83 (489.51)
cec11P19 934334.22 (700.86) ¼ 934138.43 (617.75)
cec11P20 926086.29 (462.05) – 925719.66 (674.85)
cec11P21 15.50 (0.57) ¼ 15.50 (0.62)
cec11P22 14.54 (2.40) ¼ 14.09 (3.05)

11/11/0
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becomes.
In Scheme 2, higher ranked individuals are associated with higher

probabilities in using the closest candidates, while lower ranked ones are
likely to utilize the farthest candidates. One of the advantages is that
Scheme 2 is parameterless. As shown later in Section 3, Scheme 2 works
well for most of the advanced EA and SI variants.

Based on Algorithm 2, the SCSS variants for existing EAs and SIs can
be easily implemented. Examples on the work flow of three SCSS vari-
ants, namely SCSS-DE, SCSS-ES and SCSS-PSO for the classic DE, ES, and
PSO are given in Algorithms S1, S2 and S3 in the supplementary file,
respectively.

2.2.3. Time complexity
This subsection discusses the time complexity of the proposed

method. Consider DE as an example, its time complexity is
OðNP �D �GenmaxÞ, where NP is population size, D is the number of deci-
sion variables of the problem and Genmax is the maximum number of
generations. In SCSS-DE, the complexity of fitness ranking and Euclidian
distance calculation for each generation are OðNP � log2 NPÞand
OðM �NP �DÞ, respectively. Besides, the complexity of M reproductions is
OðM �NP �DÞ. Since log2NP ≪ D, the overall complexity is
OðM �NP �D �GenmaxÞ. As investigated in Section 3, M ¼ 2 ≪ NP is suffi-
cient for advanced DEs, such as the JADE [37] and L-SHADE [41] algo-
rithms. Thus, the complexity of advanced SCSS-DEs remains as
OðNP �D �GenmaxÞ.

3. Simulation

In this section, the effectiveness of the proposed SCSS framework and
its working mechanism are investigated through comprehensive experi-
ments conducted using the CEC2014 [47] and CEC2017 [48] benchmark
function sets. Each function set consists of 30 functions with diverse
mathematic characteristics, such as unimodal, multimodal, hybrid and
composition. Since the CEC function suits have bounded constraints, to
make the comparison fair, the constraint handling technique adopted in
the SCSS variants is kept the same as the corresponding baselines. The
solution error value, defined as f(x) � f(x*), is used to measure the per-
formance of the compared algorithms, where f(x) is the smallest fitness
obtained after 104 � D function evaluations and f(x*) is the fitness of the
global optimal x*. In line with [47,48], solution error values smaller than
10�8 are considered as zero. For each test function, 51 independent runs
are performed, while the mean and standard deviations of the solution
error values are reported. In order to draw statistically sounded conclu-
sions, Wilcoxon signed-rank test [49] with 5% significance level is
applied to compare the performance. The symbols “–”, “¼” and “þ”

represent that the baseline algorithms perform significantly worse than,
similar to or better than the corresponding SCSS variants, respectively.
The significant ones are marked in bold.

3.1. Performance enhancement of classic EAs and SIs

The proposed SCSS framework is first integrated with three classic
EAs and SIs, i.e. DE and ES from EA family and PSO from SIs. Perfor-
mance of the resulting variants, SCSS-DE, SCSS-ES and SCSS-PSO are
compared with the baseline algorithms, respectively.

The parameter settings for the compared algorithms are summarized
as follows:

DE and SCSS-DE: NP ¼ 100, F ¼ 0.7, CR ¼ 0.5;
ES and SCSS-ES: μ¼ 25, λ¼ 100, intermediate recombination is used;
PSO and SCSS-PSO: NP ¼ 20, w ¼ 0.9, c1 ¼ 2.0, and c2 ¼ 2.0;

In addition, regarding the SS rule, Scheme 1 with GD¼ 1 andM¼ 2 is
adopted in the three SCSS variants. These settings are based on the
experimental findings given later in Section. 3.3. Comparison results on
30-D and 50-D CEC2014 functions are summarized in Fig. 1.
9

As observed in Fig. 1, the effectiveness of the proposed SCSS frame-
work on all the considered algorithms is verified. Of the 180 cases in
total, SCSS variants win in 125 (¼21þ26þ15þ22þ27þ14) and only lose
in one. Specifically, in the 30-D cases, SCSS-DE and SCSS-ES perform
significantly better than their corresponding baselines on 21 and 26
functions and lose on one and no function, respectively. SCSS-PSO wins
PSO on 15 functions and ties on 15 functions. In the 50-D case, SCSS-DE,
SCSS-ES, and SCSS-PSO win the baselines on 22, 27 and 14 functions,
respectively, while the rest are tie. It is noted that, since the classic al-
gorithms use fixed parameter settings, these performance improvements
are attributed to the control of the randomness of the reproduction op-
erations by SCSS, such as the random selection of parents for mutation
and dimension-wise crossover in DE. In summary, the proposed SCSS
framework significantly enhances the performance of these basic
algorithms.

3.2. Performance enhancement of advanced EAs and SIs

Due to the efforts by EA and SI researchers, performance of the classic
algorithms has been greatly improved by many advanced variants. Thus,
it is essential to investigate whether our proposed method could also
further improve these algorithms. For demonstration, SCSS is incorpo-
rated into four advanced baselines, namely JADE [37], SHADE [38],
CMA-ES [39] and LIPS [40]. Parameter settings for the compared algo-
rithms are set to be the same as those recommended in their original
literature. Additionally, for the SCSSs, Scheme 2 is utilized as the SS rule
in SCSS-JADE, SCSS-SHADE and SCSS-LIPS, while Scheme 1 with GD ¼
0 is applied for SCSS-CMA-ES. The reproduction times M is set to 2 for
SCSS-JADE and SCSS-SHADE, 4 for SCSS-LIPS and 5 for SCSS-CMA-ES.
These settings are the best, as indicated later by the parameter sensi-
tivity analyses in Section. 3.3.

The experimental results on 30-D and 50-D CEC2014 functions are
shown in Table S1 and Table S2, respectively, in the supplementary file
and further summarized in Fig. 2.

As observed from Fig. 2, SCSS also exhibits remarkable improvements
on the advanced algorithms. Out of the 240 cases in total, SCSS wins in
134 (¼14þ14þ17þ23þ16þ11þ13þ26) and loses in just 17
(¼1þ0þ5þ2þ1þ0þ5þ3). More specifically, for the advanced DEs, i.e.
JADE and SHADE, SCSS improves their performance on 55 functions and
is inferior on only 2 functions. For CMA-ES, SCSS wins in 17 and 13 cases
and loses in 5 cases on the 30-D and 50-D functions, respectively. For the
advanced PSO algorithm, i.e. LIPS, SCSS-LIPS is superior on more than 20
functions and inferior on far fewer functions in both 30-D and 50-D cases.

Considering the diverse mathematical properties of the test functions,
it can be concluded that SCSS consistently works well on various types of
functions, including unimodal, multimodal, hybrid and composition.

3.3. Working mechanism of SS rule

3.3.1. Influence of SS rule on the performance of SCSS
The performance sensitivity of SCSS to the SS rule is first investigated.

Performance of seven SCSSs, i.e. SCSS-DE, SCSS-ES, SCSS-PSO, SCSS-
JADE, SCSS-SHADE, SCSS-CMA-ES and SCSS-LIPS with different SS rules
(i.e. Scheme 1 with six GD values, i.e. 0, 0.2, 0.4, 0.6, 0.8, 1 and Scheme
2) are compared with those of the baseline algorithms, respectively. The
M value for all the SCSS variants in this experiment is set as 2. The
completed comparison results “–/¼/þ” are given in Table S3 in the
supplementary file, while Fig. 3 presents the P–N values (defined as the
number of “–” minus the number of “þ”) as a summary.

From Fig. 3, the followings can be observed:

(1) For the classic algorithms, including DE, ES, and PSO, SCSS vari-
ants adopting larger GD values perform better than those with
smaller ones. The reason is that classic algorithms are usually
explorative and deficit in exploitation (the case of Optimizer 1 in
Section 2.2.2). Large GD values could encourage exploitation to



S.X. Zhang et al. Swarm and Evolutionary Computation 56 (2020) 100696
remedy the blindness of the search. Small GD values, such as GD¼
0, make the algorithms even more explorative and deteriorate the
performance, as can be observed from Fig. 3.

(2) For the advanced algorithms, Scheme 2 is the best choice for SCSS-
SHADE and SCSS-LIPS and the third best choice for SCSS-JADE.
Also, for SCSS-JADE and SCSS-SHADE, the performance of
SCSSs with Scheme 1 significantly degenerates when GD is too
large (GD ¼ 1) or too small (GD ¼ 0). This is because JADE and
SHADE themselves maintain relatively balanced EEC (the case of
Optimizer 3 in Section 2.2.2). GD ¼ 1 would over-emphasize
exploitation and make the algorithms too greedy while an over-
explorative setting GD ¼ 0 may deteriorate the performance on
test functions which need more exploitation.

(3) For SCSS-CMA-ES, Scheme 1 with GD ¼ 0 achieves the best per-
formance, indicating that the original CMA-ES (the case of Opti-
mizer 2 in Section 2.2.2) needs more exploration for performance
enhancement. This observation is consistent with the statements
in some CMA-ES literature, such as IPOP-CMA-ES [46] that
CMA-ES could benefit from enhanced exploration capability when
solving difficult CEC benchmarks. The restart mechanism pro-
posed in IPOP-CMA-ES enhances the population diversity. To
investigate the effectiveness of SCSS on IPOP-CMA-ES, we also
implemented the SCSS-IPOP-CMA-ES algorithm. According to our
experiment, the optimal SS rule for SCSS-IPOP-CMA-ES goes to
Scheme 2. Comparative results of SCSS-IPOP-CMA-ES with
IPOP-CMA-ES are presented in Table S4 in the supplementary file.
It can be seen that SCSS-IPOP-CMA-ES performs slightly better
than IPOP-CMA-ES in 30-D but worse in 50-D with the “win/-
tie/lose” counts of “5/23/2” and “4/20/6” respectively. For most
of the functions, the two algorithms perform similarly with the
superiority of SCSS being less obvious. There may be two reasons:
1) The restart mechanism successfully maintains population di-
versity and becomes the dominate component; 2) the restart
mechanismmay be inappropriate for the SCSSmethod since it was
specifically designed for IPOP-CMA-ES. Nevertheless, designing
new restart conditions is a topic that deserves future
investigations.

In conclusion, the choice of the best SS rule depends on the EEC of the
baselines while Scheme 2 consistently performs significantly better than
or similar to the baselines. As a design rule of thumb, for an optimizer
with relatively balanced EEC, Scheme 2 is recommended.

3.3.2. Behavior of SS rule
In the proposed SCSS framework, the selection of the closest or

farthest candidates is conducted based on the fitness ranking of the
current solutions. In this way, SCSS adjusts the level of exploration/
exploitation according to their potential. In the experiment conducted on
SCSS-DE (GD ¼ 1) and SCSS-SHADE (Scheme 2), SS rule is compared
with a randomly selecting (RS) manner (i.e. selecting manner in the
baseline algorithm). The total distance TD between the selected candi-
dates and the current solutions against the rank on 30-D functions F5 and
F13 in the median run is shown in Fig. 4.

From Fig. 4, we have the following observations: 1) on the explorative
DE, SS enhances the exploitation on all ranks, resulting in smaller TD
values than that of RS; 2) on SHADE with relatively balanced EEC, for
ranks smaller than NP/2 ¼ 50, SS yields smaller TD compared to RS,
resulting in more exploitation. While for ranks larger than 50, it is the
opposite case; 3) on SHADE, for RS, TD varies little with the rank but TD
significantly increases with the rank for SS. Since the searching radius
SRAD can be roughly calculated as TD/Genmax, where Genmax is the
maximum number of generations and is the same for both SHADE and
SCSS-SHADE, SRAD∝TD. This means that SRAD increases with the rank
in SS while it is the same in RS. In other words, SS is a finer strategy; 4)
the smaller TD values of SHADE compared to that of DE reveal that
SHADE is more exploitative than DE. Therefore, unlike the case in SCSS-
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DE, enlarging GD in SCSS-SHADE may make the algorithm over-
exploitative and deteriorate the performance, which is also observed
from Fig. 3.

3.3.3. Benefit of SS rule
To further demonstrate the benefit of SS (Scheme 2), it is compared

with the following three variants:
Variant-oppo: An opposite version of Scheme 2 is defined as follows:

If randi(0,1) > rank(i)/NP
Select the farthest candidate from yim {m ¼ 1, 2, …, M} for

individual xi ;
Else
Select the closest candidate from yim {m ¼ 1, 2, …, M} for

individual xi ;
End If

Variant-Meval: Scheme 2 is replaced with true function evaluations.
Specifically, for each current solution, M candidates are evaluated and
the fittest one is selected as offspring, like CoDE [31].

Variant-CSM: Instead of using Scheme 2, the cheap surrogate model
(CSM) proposed in Ref. [20] is used to determine the offspring from M
candidates.

For a direct comparison, other settings are unaltered for experiments
conducted with JADE [37]. From Table 1 and Table S5, the results are
summarized as follows.

(1) SCSS-JADE exhibits better performance than Variant-oppo. In
addition, comparing Table S1 with Table S5, it is also observed
that Variant-oppo performs significantly worse than the baseline,
concluding that the opposite version is an inappropriate selective
rule. This confirms the illustrations given in Section 2.2.2.

(2) SCSS-JADE performs better than Variant-Meval. This can be
explained by the fact that, in Variant-Meval, M (M ¼ 2) function
evaluations are consumed to determine each offspring per
geneation and, as a result, the maximum number of iterations is
reduced. (Note: The total number of evaluations are fixed.)

(3) SCSS-JADE also outperforms Variant-CSM. To have an in-depth
insight into the working processes of SS and CSM, Fig. 5 plots
their average prediction accuracy (PA) on thirty 30-D CEC2014
functions. The PA is calculated as the number of trials that
correctly selects the fittest candidate divided by the number of
total trials. From Fig. 5, we have the following observations and
discussions.

1) Overall, PA varies with problems that pose different degree of

difficulties.
2) For SS, exploitation part (EiP) has higher PA than the explo-

ration part (ErP) on all the functions. This is understandable as
ErP is responsible for broadening the search region.

3) Comparing EiP with CSM, it is seen that EiP has a higher PA on
24 out of the total 30 functions. As pointed out in Ref. [20],
since CSM is a cheap model, it may not estimate the density
exactly, especially for the highly-rotated CEC test functions.

4) Although a high PA is generally more desirable, it does not
necessarily contribute to better performance on some func-
tions. This can be confirmed by the observations on F17, F18
and F24. On these three functions, although CSM has higher PA
than EiP, its performance is significantly inferior to SS (see
Table S5). This is because CSM includes no mechanism for
exploration while SS maintains two strategies simultaneously
(i.e. superior/inferior solutions select the closest/farthest
candidates) for synthesizing exploitaton and exploration pur-
poses, respectively. The latter strategy always attemps to
explore far-away areas, where new exploitation may then
emerge once the offspring of inferior solutions becomes elites.
For this reason, it is expected that exploration could also
benefit exploitation and should work cooperatively. In fact,
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this has been verified by the overwhelmingly better perfor-
mance of SCSS-JADE with Scheme 2 over GD ¼ 1 (see Fig. 3).

5) Besides accuracy, it is noted that the SS rule has lower
complexity ðOðM �NP �DÞÞ than CSM ðOðM �NP2 �DÞÞ [20],
which is more significant with larger NP value.
3.3.4. Combined effects of operations and parameters by SS rule
The SS rule considers candidates that reveal the combined effects of

operations and parameters, which makes SCSS a general framework that
can be easily applied to various types of EAs and SIs. The effects of SCSS
on the randomness of operations and parameters of the previously
considered algorithms are summarized as follows.

(1) For the three classic algorithms DE, ES and PSO, since the pa-
rameters are fixed during the entire evolution process, SCSS re-
veals the effect of operations;

(2) For the advanced DEs, i.e. JADE and SHADE, except the opera-
tions, since different reproduction procedure m may use different
F and CR, SCSS reveals their combined effects;

(3) In the advanced ES, i.e. CMA-ES, new individuals are generated
from the center of best solutions by following a normal distribu-
tion. Thus, in SCSS-CMA-ES, different normal distributions are
sampled in different reproduction procedures;

(4) In the advanced PSO, i.e. LIPS, SCSS uses different independently
generated ϕj in the position update equation, which is a uniformly
distributed random number ranged in [0, 4.1/neighborhood size]
for each dimension j [40].

3.4. Performance sensitivity to M

In SCSS, M (M > 1) reproduction procedures should be performed.
Indeed, if M is set to 1, SCSS variants degenerate to baselines. The per-
formance of SCSS is influenced by M. Therefore, in this subsection, SCSS
variants with five different M values, i.e. M ¼ 2, 3, 4, 5 and 10 are
compared. Except for M, other parameter settings are set the same as
those used previously in Sections 3.1 and 3.2. Performance comparisons
of the SCSS variants with the baselines on 30-D CEC2014 functions are
summarized in Table S6 and Fig. 6. In addition, to show the dynamic
performance variation with increasing M, the performance of the SCSS
variants using adjacent M settings are also compared with each other, as
shown in Table S7 and Fig. 7.

It can be observed from Fig. 6 that allM settings significantly improve
the performance of the baselines except SCSS-JADE and SCSS-SHADE
with M ¼ 10.

In Fig. 7, for clarity, the algorithms are divided into two categories.
Category 1 includes the SCSS variants which may perform significantly
better with M > 2 than with M ¼ 2, while Category 2 lists the SCSS
variants which perform similarly or even worse with increasedM values.

In Category 1, it is observed that the performance of DE and ES
consistently improves when M increases. In this paper, we only investi-
gate cases up to M ¼10 since these classic algorithms are significantly
inferior to the advanced algorithms. Moreover, increasingMwill increase
the computational complexity of the algorithm. For CMA-ES and LIPS,
SCSS variants with M ¼ 5 and M ¼ 4 show the best performance,
respectively. It is noticed that in SCSS-CMA-ES, GD is set to 0, thus, larger
M values would make the algorithm more explorative.

In Category 2, enlarging M does not bring significant performance
improvements. On the contrary, it may even significantly degrade the
performance, eg. M > 4 for JADE and SHADE, or M > 2 for PSO. The
reason is that different from those in Category 1 (eg. DE, ES and LIPS),
JADE, SHADE and PSO include elite individuals in their reproduction
processes. Specifically, the top-ranked individuals used in the “current-
to-pbest/1” mutation strategy of JADE and SHADE and the global best
gbest used in the velocity update equation of PSO. Therefore, algorithms
with too large M value is potentially too greedy, making the algorithms
stuck in a local optima.
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Overall, it can be concluded that the appropriateM value is relatively
small for advanced variants.

3.5. Application in top methods from CEC competitions

From Sections 3.3 and 3.4, it can be concluded that advanced SCSS-
DEs with Scheme 2 and M ¼ 2, SCSS-CMA-ES with Scheme 1(GD ¼ 0)
and M ¼ 5 exhibit promising performance. In this subsection, to
demonstrate the flexibility, SCSS is further applied with these settings to
four highly competitive algorithms from the CEC competitions. Among
them, L-SHADE [41] is the winner of the CEC2014 competition,
UMOEA-II [42] and L-SHADE_EpSin [43] are the joint-winner of the
CEC2016 competition and jSO [44] is one of the best-performing algo-
rithms in the CEC2017 competition. Their source codes are available at
http://www.ntu.edu.sg/home/epnsugan/. Parameter settings for these
top algorithms are set the same as the original literature.

As shown in Table S8, Table S9 and Fig. 8, SCSS also enhances the
performance of these top methods. Out of the total 240 cases, SCSSs win
in 88 (¼10þ9þ8þ7þ18þ10þ13þ13) cases and lose in 12
(¼2þ1þ0þ2þ2þ3þ0þ2) cases. Specifically, in the 30-D case, SCSS-L-
SHADE, SCSS-UMOEA-II, SCSS-L-SHADE_EpSin, and SCSS-jSO perform
significantly better than the corresponding baselines in 10, 9, 8 and 7
cases and underperform in 2, 1, 0 and 2 cases, respectively. In the 50-D
case, the performance improvements are more significant. SCSS-L-
SHADE, SCSS-UMOEA-II, SCSS-L-SHADE_EpSin and SCSS-jSO exhibit
superior performance on 18, 10, 13 and 13 functions respectively and are
inferior on far fewer functions.

Fig. 9 shows the convergence plot of SCSS-L-SHADE versus L-SHADE
on six selected 50-D CEC2014 functions. As observed, SCSS-L-SHADE
exhibits better convergence than L-SHADE. In conclusion, these perfor-
mance enhancements indicate that the proposed SCSS framework is a
better alternative for these top algorithms.

3.6. Performance on CEC2017 test suit and scalability study

To assess the performance of SCSS on a wider variety of functions, in
this subsection, we further test the advanced SCSS variants on the
recently developed CEC2017 test suite [48]. This test suite also has 30
functions, but with several new features, such as new basic functions,
graded level of linkages and rotated trap functions [48].

Parameter settings for the algorithms are the same as those used in
Sections 3.2 and 3.5. Tables S10–S13 present the experimental results on
30-D and 50-D functions and Table 2 summarizes the comparison results.
From Table 2, it is clear that SCSS also significantly improves the per-
formance of the baselines on the CEC2017 functions. In the total of 480
cases, SCSS wins in 225, ties in 240 and loses in 15.

To study scalability, the SCSS framework is also tested on 100-D
CEC2017 functions. The four top methods are selected for the experi-
ment. As shown in Table S14 and Fig. 10, SCSS still yields remarkable
performance improvements on the higher dimensional functions, which
are much more difficult than the lower dimensional ones. In the total of
120 cases, SCSS outperforms in 70 (¼20þ14þ16þ20) cases and under-
performs in 6 (¼2þ2þ0þ2) cases. These improvements are attributed to
the balanced exploitation and exploration maintained by the SS rule.

Furthermore, the overall performances of the considered algorithms
are compared according to multiple problem Wilcoxon’s test [50] and
Friedman’s test [50]. Based on multiple problems Wilcoxon’s test,
Table 3 shows that the SCSS variants perform significantly better than the
corresponding baselines at α ¼ 0.05. With respect to the Friedman’s test,
Table 4 indicates that SCSS-jSO is the best-performing algorithm, which
achieves the smallest ranking value of 2.76, followed by
SCSS-L-SHADE_EpSin.

3.7. Application in real-world problems

We have also applied the proposed method to 22 real-world

http://www.ntu.edu.sg/home/epnsugan/
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applications, from Ref. [51], where detailed descriptions and source
codes of the problems are available. These problems come from various
scientific and engineering fields, such as frequency-modulated (FM)
sound waves parameter estimation problem, Lennard-Jones potential
problem, spread spectrum radar polyphase code design problem, large
scale transmission pricing problem and so on [51]. They have a wide
range of dimensionality from one up to 216 and are very challenging. As
an example, we focused on SCSS-L-SHADE and L-SHADE. Each algorithm
has 30 trials with each trial assigned 104 � D function evaluations. Note
that the maximum function evaluations are kept the same as that used for
the previous benchmark functions because higher dimensional functions
are more difficult and should be given more resources.

Table 5 tabulates the mean and standard deviations of the solution
error values. As shown, SCSS-L-SHADE performs significantly better on
11 problems (including P1, P5–P7, P9, P11, P12, P16–P18 and P20) and
loses on none. This demonstrates the reliable performance of SCSS when
incorporated with L-SHADE for real-world applications.

4. Conclusion

To address the potential adverse effect of randomness in evolutionary
algorithms, a selective-candidate framework with similarity selection
rule (SCSS) is proposed in this paper. In SCSS, each current solution owns
a pool of M candidates generated by M reproduction procedures. The
final candidate is then determined from the pool by a similarity selection
method, which is designed based on fitness ranking and Euclidian dis-
tance measures. We have described the motivation of the design (Section
2.2.2), incorporated the design into several classic, advanced and top
algorithms from EA and SI families (Sections 3.1, 3.2, 3.5 and 3.6),
analyzed its working mechanism (Sections 3.3 and 3.4) and have also
applied it to solve 22 real-world problems (Section 3.7). Comprehensive
experiments show that 1) SCSS significantly enhances the performance of
the algorithms under consideration; 2) Scheme 2 performs consistently
well, especially on the advanced and top algorithms and is thus recom-
mended; 3) the appropriate M value is relatively small (2–4) for the
advanced and top algorithms with balanced EEC. According to Section
3.4, M ¼ 2 should be the first choice when testing SCSS in a new meta-
heuristic since it always brings improvements. One may then further
increase M to see whether better performance can be achieved.

The supplementary file and MATLAB codes of SCSS can be down-
loaded from https://zsxhomepage.github.io/.
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